注入同期系高効率電力発振器の技術基盤の構築

研究代表者 魏 秀 欽 長崎大学大学院工学研究科 准教授

1 研究目的・意義

情報機器の高度化に伴って基地局用増幅器、無線電力伝送送信部などに用いられる、より高効率で高電 力密度の増幅器が求められる。しかしながら、10MHz以上の高周波数において100W以上の高出力動作を 達成する用途に対する研究開発が遅れており、このカテゴリーに対応する DC/AC 変換回路の設計開発が 求められている。電力発振器は無線通信や無線電力伝送の送信段で用いられるデバイスで、フィードバッ ク構造を持ち自励発振する特徴を持つ。しかし、自励発振のため、その出力周波数の精度が低いという問 題があり、実用化のためには周波数の安定性が欠かせない。

本研究では、通信用電力発振器に対し、周波数安定化・高効率化を低コストで実現する回路技術を提案 した。自励式電力発振器の周波数安定化のために注入同期理論を用いることを基本コンセプトとし、さらに 注入信号にスイッチ素子に生じる損失を削減のための回路設計技術を融合することにより、高効率化も併せ て実現した。本技術が確立されることにより、周波数安定化を実現しつつ、従来の増幅器と比較して駆動回 路が不要となり、結果として回路の実装コスト削減も達成することが可能になる。本研究における、同期注 入電力発振器を物理系とみなした位相縮約アプローチと、エンジニアリングとしての設計技術を融合させる ことにより構築される設計理論は産業的にも学術的にも高い意義を持つ。この成果により、提案技術が多く の回路で採用されることも期待される。

2 研究内容·研究成果

2-1 注入同期系 E 級発振器

図 1 (a)に注入同期系 E 級発振器の回路構成を示す[1]、[2]。この回路は E 級発振器と注入回路により構成 される。E 級発振器は供給電圧源 V_{DD} 、チョークコイル L_c 、スイッチ素子として MOSFET S、シャントキャ パシタ C_s 、共振回路 L_o - C_o -R、分圧キャパシタ C_1 、 C_2 、フィードバックインダクタ L_f 、分圧抵抗 R_{d1} 、 R_{d2} から構成される。

図1:回路構成。(a) 注入同期系 E 級発振器。(b) 等価回路。

図2:E級発振器の動作波形。

図 2 に E 級発振器の動作波形を示す。一般的に、共振回路 L_o-C_o-R の Q 値が高いため、出力電流 i は正弦 波とみなすことができる。フィードバック電圧 v_i は出力電圧から得られて、MOSFET を駆動する。 $v_i \ge v_{th}$ の場合は、MOSFET がオンとなる。ここで、 v_{th} は MOSFET のスレショルド電圧である。逆に、 $v_{th} < v_f$ の場合は、MOSFET がオフとなる。スイッチがオフの期間は、図 2 のように、電流がシャントキャパシタに流れること により、スイッチ電圧を生じる。一方、スイッチがオンの期間は電流がスイッチに流れ導通状態となるため、 スイッチにかかる電圧はほぼ零となる。ここで、スイッチがオンとなる時、スイッチ電圧およびその傾きが 零となるという二つの条件を E 級動作スイッチング[1]-[5]、[24]といい、図 2 の回路動作では次式で表される。

$$v_S(2\pi) = 0$$
 and $\left. \frac{dv_S}{d\theta} \right|_{\theta=2\pi} = 0$

(1)

この E 級動作スイッチングにより、この E 級発振器は高周波動作において、高電力変換効率を実現することできる。また、フィードバックに流れる電流は出力電流と比べて極めて小さいため、フィードバック回路における電力損失は低いである。

一般的には、回路素子のばらつきなどに起因するため、所望の発振周波数が得られない。この問題に対応 するための技術として、外部から微小な信号を注入し、発振器の動作をその信号に同期させることにより周 波数の安定化を図る注入同期技術がある[1]、[2]、[6]-[23]。注入信号は発振器本体の電力と比較して極めて低 い電力レベルの信号でよいため、この注入回路を追加されても、回路の設計が簡単であり、高効率を維持す ることができる。発振器のフィードバック電圧は注入信号に同期すれば、その発振周波数は注入信号の周波 数と一致する。また、一般に、注入信号の電力が高くなれば高くなるほど、同期範囲は広がる。つまり、同 期しやすくなる。しかし、高注入電力はフィードバック電圧波形および時比率に影響を及ぼす。したがって、 大きな摂動に対する発振器本体と注入回路を一つのシステムとして設計する必要となる。さらに、電力付加 効率の視点から、低注入信号電力が有益であるため、同期範囲の導出は重要である。

2-2 位相縮約アプローチ

位相縮約アプローチは物理分野で同期現象を調査するための解析手法である。回路のダイナミクスを位相 のみで記述するため、計算コストが大幅に減少する。その位相縮約アプローチを適用することにより、同期 範囲が簡単かつ高精度で導出することができる。

(1) 位相関数

非摂動的ダイナミクスのシステムは以下のような微分方程式で記述される。

1...(0)

$$\frac{d\boldsymbol{x}(\theta)}{d\theta} = \boldsymbol{F}\left(\boldsymbol{x}(\theta)\right) \tag{2}$$

ここで $\theta = \omega t = 2\pi f_{free} t \in \mathbf{R}$ 、および $\mathbf{x} \in \mathbf{R}^n$ はそれぞれ角度とn次元状態空間を示す。簡単化のため、

$$\boldsymbol{F}: \boldsymbol{R} \times \boldsymbol{R}^{n} \to \boldsymbol{R}^{n} \left(\boldsymbol{x}(\theta) \right) \to \boldsymbol{F} \left(\boldsymbol{x}(\theta) \right)$$
(3)

は次式のように周期2πの周期性を持つ系とする。

$$\boldsymbol{F}\left(\boldsymbol{x}(\theta+2\pi)\right) = \boldsymbol{F}\left(\boldsymbol{x}(\theta)\right) \tag{4}$$

また、式(2)は $x(\theta) = \phi(\theta)$ という解をもち、この解は図3(a)のように位相空間においてリミットサイクル を持つとする。ダイナミクスのシステムでは、位相は以下の式のように定義される。

$$\phi(\boldsymbol{\varphi}) = \theta \tag{5}$$

ここでφは2πの周期性を有する。φの微分は次式のようになる。

$$\frac{d\phi}{d\theta} = \frac{\partial\phi}{\partial\boldsymbol{x}} \cdot \frac{d\boldsymbol{\varphi}}{d\theta}
= \frac{\partial\phi}{\partial\boldsymbol{x}} \cdot \boldsymbol{F}(\boldsymbol{x}(\theta))
= 1$$
(6)

図3:発振器のダイナミクス。(a) リミットサイクル。(b) ϕ に対する $d\phi/dt$ 。

摂動的ダイナミクスのシステムは以下のような微分方程式で記述される。

$$\frac{d\boldsymbol{x}(\theta)}{d\theta} = \boldsymbol{F}\left(\boldsymbol{x}(\theta)\right) + \boldsymbol{G}(\Theta)$$
(7)

ここで $G(\Theta)$ と $\Theta = \Omega t$ は弱摂動、つまり本研究における注入信号と $\Omega = 2\pi f_{inj}$ の角周波数を持つ摂動の角 度を示す。式(7)も $x(\theta) = \varphi_p(\theta)$ という解をもつと仮定する。その摂動はリミットサイクル φ から離れた軌道を 描く。ただし、リミットサイクル φ_p が定常状態において、注入信号が微小なため、軌道 φ_p は軌道 φ から僅 かに逸脱する。したがって、 φ_p における位相 ϕ_p は φ の近傍にあると定義することが可能となる。 式(6)と(7)より、摂動的ダイナミクスのシステムの位相ダイナミクスは次式で表される。

$$\frac{d\phi_p}{d\theta} = \left. \frac{\partial\phi_p}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{\varphi}_p(\phi_p)} \cdot \frac{d\boldsymbol{\varphi}_p}{d\theta} \\
= \left. \frac{\partial\phi_p}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{\varphi}_p(\phi_p)} \cdot \left(\boldsymbol{F}\left(\boldsymbol{x}(\theta)\right) + \boldsymbol{G}(\Theta) \right) \\
= 1 + \left. \frac{\partial\phi_p}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{\varphi}_p(\phi_p)} \cdot \boldsymbol{G}(\Theta) \tag{8}$$

摂動が小さい場合、 φ_p は軌道 φ からの逸脱も小さいである。したがって、式(8)の右辺にある $\partial \phi_p / \partial x$ は次式のように近似できる。

$$\frac{\partial \phi_p}{\partial \boldsymbol{x}} \bigg|_{\boldsymbol{x} = \boldsymbol{\varphi}_p(\phi_p)} \approx \left. \frac{\partial \phi}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x} = \boldsymbol{\varphi}(\phi)} = \boldsymbol{Z}(\phi) \tag{9}$$

ここで **Z**(φ)は位相感受関数である。式(9)を式(8)に代入することにより、摂動的ダイナミクスのシステムの位相関数は次式のように得られる。

$$\frac{d\phi_p}{d\theta} \approx 1 + \boldsymbol{Z}(\phi) \cdot \boldsymbol{G}(\Theta)$$
⁽¹⁰⁾

(2) 時間平均

摂動的リミットサイクルと外部注入信号との位相差は

$$\psi = \phi_p - \Theta \tag{11}$$

となる。式(10)と(11)の øp を除去することにより、次式が得られる。

$$\frac{d\psi}{d\theta} \approx 1 - \frac{d\Theta}{d\theta} + \mathbf{Z}(\psi + \Theta) \cdot \mathbf{G}(\Theta)$$
$$= 1 - \frac{\Omega}{\omega} + \mathbf{Z}(\psi + \Theta) \cdot \mathbf{G}(\Theta)$$
(12)

 $\Omega/\omega \approx 1$ および $G(\Theta) \ll 1$ であるため、 Ψ の変化量は Θ の変化量と比較して極めて小さいである。したがって、 Ψ はダイナミクスのシステムにおいて一周期の期間に一定であると考えられる。また、式(12)は次式のように Θ を平均することにより簡単化できる。

0

$$\frac{d\psi}{d\theta} = 1 - \frac{\Omega}{\omega} + \frac{1}{2\pi} \int_{0}^{2\pi} \boldsymbol{Z}(\psi + \Theta) \cdot \boldsymbol{G}(\Theta) d\Theta$$
$$= 1 - \frac{\Omega}{\omega} + \Gamma(\psi)$$
(13)

(3) 同期範囲

 $d\Psi/d\theta = 0$ の場合、発振器本体は弱外部信号と同期する。図 3(b)に Ψ の関数とする $d\Psi/d\theta$ を示す。 Ψ に対し、 $d\Psi/d\theta = 0$ の解が一つまたは一つ以上存在すれば、位相差は安定状態に落ち着いたとみなすことができる。 $Z \ge G$ は周期 2πの周期性を持つ関数であるため、 $\Gamma(\Psi)$ は Ψ の周期関数となる。1- Ω/ω は下記の条件を満たせば、図 3(b)のように、 $d\Psi/d\theta$ は一つまたは一つ以上の解が存在する。

$$-\Gamma_{max} \le 1 - \frac{\Omega}{\omega} \le -\Gamma_{min} \tag{14}$$

ここで Γ_{min} と Γ_{max} は $\Gamma(\Psi)$ の最小値と最大値である。式(14)より、同期範囲は次式のように得られる。

$$\Gamma_{min} + 1 \le \frac{\Omega}{\omega} \le \Gamma_{max} + 1$$

Γ(Ψ)は式(13)に示される位相感受関数と外部注入信号との畳み込み積分から得られる。したがって、位相 感受関数を導出したうえで、注入同期系発振器の同期範囲はGに基づき導出することができる。

2-3 注入同期系 E 級発振器の設計

(1) 仮定

E級発振器の設計および同期範囲の導出のため、式(7)により注入同期系 E級発振器の回路方程式を定式化する必要がある。それらの方程式は下記の仮定に基づき導出される。

a) MOSFET は理想的なスイッチ素子とし、切り替え時間は無視できるほど小さい、オフ抵抗は無限大、オン抵抗は rs とする。

b) MOSFET のゲートーソース間に寄生容量 C_g と寄生抵抗 r_g が存在する。

c) IRF530 をスイッチ素子として選択される。IRF530 のパラメータは表 1 に示される。この表において、 V_{th} 、 r_s 、および v_{fFEF} はデータシートから引用し、 C_g と r_g が測定から得られる。ここで、 v_{fFEF} は定額のゲート ーソース間電圧である。

(15)

表1: IRF530 のパらメータ

Threshold voltage V _{th}	3 V
Switch on resistance r_S	0.16 Ω
Equivalent series capacitance C_g	1.78 nF
Equivalent series resistance r_g	2.17 Ω
Maximum gate-source voltage V _{fFET}	20 V

d) 各インダクタはそれぞれ等価直列抵抗を持つ。

e) シャントキャパシタ Csはスイッチ素子の寄生容量を含む。

f) スイッチのオン抵抗および等価直列抵抗を含むすべての受動素子は線形動作をする。

上記の仮定により、本研究の設計で対象とする等価回路は図1(b)に示される。

(2) 回路方程式

図 1(b)に示される等価回路により、回路方程式は次式のようになる。

$$\begin{cases} \frac{R}{V_{DD}} \frac{di_C}{d\theta} = \frac{R}{\omega L_C} \left(1 - \frac{v_S}{V_{DD}} - \frac{r_{L_C} i_C}{V_{DD}} \right) \\ \frac{1}{V_{DD}} \frac{dv_S}{d\theta} = \frac{1}{\omega C_S V_{DD}} \left(i_C - \frac{v_S}{R_S} - i \right) \\ \frac{1}{V_{DD}} \frac{dv}{d\theta} = \frac{1}{\omega C_0 V_{DD}} \left(i_C - \frac{v_S}{R_S} - i \right) \\ \frac{1}{V_{DD}} \frac{dv}{d\theta} = \frac{R}{\omega L_0} \frac{v_S - v_{-1} - v_{2} - r_{L_0} i}{V_{DD}} \\ \frac{1}{V_{DD}} \frac{dv_1}{d\theta} = \frac{1}{\omega L_1 V_{DD}} \left(i - \frac{v_1 + v_2}{R} \right) \\ \frac{1}{V_{DD}} \frac{dv_2}{d\theta} = \frac{1}{\omega C_2 V_{DD}} \left(i - \frac{v_1 + v_2}{R} - i_f \right) \\ \frac{r_g}{V_{DD}} \frac{di_f}{d\theta} = \frac{r_g}{\omega L_f} \frac{v_2 - v_f - r_{L_f} i_f}{V_{DD}} \\ \frac{1}{V_{DD}} \frac{dv_g}{d\theta} = \frac{1}{\omega C_g r_g \left(\frac{1}{r_g} + \frac{1}{R_{d1}} + \frac{1}{R_{d2}} + \frac{1}{R_{inj}} \right)} \left\{ \frac{i_f}{V_{DD}} + \frac{1}{R_{d1}} + \frac{1}{R_{inj}} \frac{v_{inj} - v_{C_{inj}}}{V_{DD}} - \frac{v_g}{V_{DD}} \left(\frac{1}{R_{d1}} + \frac{1}{R_{d2}} + \frac{1}{R_{inj}} \right) \right\} \\ \frac{1}{V_{DD}} \frac{dv_{Cinj}}{d\theta} = \frac{v_{inj} - v_{Cinj} - v_f}{\omega C_{inj} R_{inj} V_{DD}} \\ v_f = v_g + \omega C_g r_g \frac{dv_g}{d\theta}. \end{cases}$$
(16)

式(16)において、 R_s はスイッチの状態を抵抗として表している。 $\theta=0$ でスイッチがオンになると定義すると、 R_s は以下のように表される。

$$R_S = \begin{cases} r_S & \text{for } (V_{th} - v_f) \le 0\\ \infty & \text{for } (V_{th} - v_f) > 0 \end{cases}$$
(17)

 $今、x \in \mathbb{R}^9$ および $G \in \mathbb{R}^9$ は以下のように定義する。

$$\boldsymbol{x}(\theta) = \frac{1}{V_{DD}} \left[Ri_C(\theta), v_S(\theta), v(\theta), Ri(\theta), v_1(\theta), v_2(\theta), r_g i_f(\theta), v_g(\theta), v_{C_{inj}}(\theta) \right]^T$$
(18)

$$\boldsymbol{G}(\Theta) = \frac{v_{inj}}{V_{DD}} [0, 0, 0, 0, 0, 0, g_1, g_2, g_3]^T$$
(19)

ここで、

$$g_{1} = -\frac{r_{g}}{\omega L_{f} R_{inj} \left(\frac{1}{r_{g}} + \frac{1}{R_{d1}} + \frac{1}{R_{d2}} + \frac{1}{R_{inj}}\right)}$$
(20)

$$g_2 = \frac{1}{\omega C_g r_g R_{inj} \left(\frac{1}{r_g} + \frac{1}{R_{d1}} + \frac{1}{R_{d2}} + \frac{1}{R_{inj}}\right)}$$
(21)

$$g_3 = \frac{1}{\omega C_{inj} R_{inj}} \left[1 - \frac{1}{R_{inj} \left(\frac{1}{r_g} + \frac{1}{R_{d1}} + \frac{1}{R_{d2}} + \frac{1}{R_{inj}} \right)} \right]_{(22)}$$

x と G を用い、式(16)は次式のように表される。

$$rac{doldsymbol{x}(heta)}{d heta} = oldsymbol{F}\left(oldsymbol{x}(heta)
ight) + oldsymbol{G}(\Theta)$$

(23)

本研究では、ルンゲ・クッタ法およびニュートン法により、微分方程式を解く。

(3) 発振器本体の設計

設計仕様として、f = 1 MHz、 $V_{DD} = 12$ V、Q = 5、R = 25 Ω、 $V_o = 9$ V, $L_o/L_c = 0.1$ 、 $V_{fmax} = 15$ V、 $R_{inj} = 2$ K Ω、 $C_{inj} = 0.1 \mu$ F、 $R_{d1} = 250$ kΩ、 $R_{d2} = 750$ kΩを与える。さらに、 r_s 、 C_g 、および r_g は表 1 に示された値を用 いる。以上の設計仕様で、[3]と[4]における設計手法を用いることにより、E 級動作スイッチングを満足する E 級発振器本体の各素子値は表 2 のように導出される。ここで、 $v_{inj} = 0$ である。

	Calculated	Measured	Difference
L_C	199 <i>µ</i> H	214 µH	7.5 %
L_0	19.9 µH	19.9 µH	-0.20 %
L_f	16.5 μH	16.5 μH	-0.36 %
C_S	1.50 nF	1.46 nF	-2.5 %
C_0	1.75 nF	1.74 nF	-0.68 %
C_1	1.80 nF	1.79 nF	-0.83 %
C_2	17.3 nF	17.4 nF	-0.38 %
R	25.0 Ω	25.0 Ω	-0.090 %
R_{d1}	750 kΩ	752 kΩ	0.20 %
R_{d2}	250 kΩ	249 kΩ	-0.21 %
r_{L_C}	-	0.0100 Ω	-
r_{L_0}	-	0.503 Ω	-
r_{L_f}	-	0.400 Ω	-
Rinj	2 kΩ	1.98 kΩ	-0.80 %
C_{inj}	0.100 µF	0.101 µF	1.4 %
ffree	1 MHz	1.0077 MHz	0.77 %
$\overline{V_{DD}}$	12.0 V	12.0 V	0.0 %
V_o	9.0 V	8.80 V	-2.2 %
I_c	0.277 A	0.278 A	0.36 %

表2:注入同期系E級発振器の設計値

図4:注入同期系E級発振器の波形。(a)計算波形。(b)実験波形。

図4は表2で示された状態における実験波形および計算波形を示す。表2と図4より、実験結果と計算

結果の良好な一致が確認された。この実験では、発振周波数は 1.0077 MHz と測定された。

2-4 同期範囲の導出

位相縮約アプローチに基づき、注入同期系 E 級発振器の同期範囲を導出する。

(1) インパルス感度関数と線形反応領域の定義

同期範囲を導出するために、位相感受関数を求まる必要がある。これは、 Γ(Ψ)が位相感受関数と外部注入信号との畳み込み積分から得られるためである。この位相感受関数はインパルス感度関数とも呼ばれる。 提案された同期範囲の導出手法では、位相感受関数は数値計算的に得られる。

発振器は定常状態であれば、1周期の発振において、任意の時間に微小なインパルス電圧摂動を注入する ことができる。図5は $\phi = \phi_i$ のときインパルス摂動を注入される際の軌道の例を示す。インパルス波形を 注入した後、波形は過渡応答をわたって定常状態に戻る。しかし、図5に示されるように、位相シフト量 ϕ が残される。この位相シフト量 $\Delta \phi$ は注入位相 ϕ_i の関数として表現される。この関数はインパルス感度関 数である[8]、[10]、[11]、[13]、[18]。位相感受関数は発振器のリミットサイクルにおける位相勾配を示すた め、インパルス感度関数は位相感受関数に等価できる。インパルス感度関数を数値計算法で求める際には、 注入パルスの幅 ω_p 、高さ h_p が重要である。これは位相シフト量がインパルス摂動の注入位相 ϕ_i およびパル スの形に依存する。注入パルスが狭くて低い場合は、位相シフト量はパルスの面積と比例する。 $\Delta \phi$ が h_p/V_{DD} と比例する領域は線形反応領域と定義される。インパルス感度関数はこの領域で得られる場合、正規化され る位相シフト量はパルス面積より一意に決定される。

図6: $\phi_i = 0$ における設計された注入同期系E級発振器の位相シフト量 $\Delta \phi_o$

本研究では、 $\Gamma(\varphi)$ は次式から得られる。

$$\Gamma(\psi) = \frac{1}{2\pi} \int_{0}^{2\pi} Z_0(\psi + \Theta) \cdot \frac{v_{inj}(\Theta)}{V_{DD}} d\Theta$$
(24)

ここで Z₀(\$\phi_i)はインパルス感度関数である。

(2) インパルス感度関数の導出

図6は $\phi_i=0$ と $\omega=0.002\cdot 2\pi$ においてインパルス振幅の関数とする $\Delta \phi$ を示す。正規化される注入電 圧は次式のようになる。

$$\frac{v_{inj}}{V_{DD}} = \begin{cases} \frac{h_p}{V_{DD}}, & \text{for } \phi_i \le \theta < w_p \\ 0, & \text{for other} \end{cases}$$
(25)

この図では、スイッチがターンオン瞬間にパルス波形を注入され、5000 周期を経過後の位相シフト量をプロットされる。図6より、位相シフト量はパルスの高さの変化に応じて線形的に変化することがわかる。インパルス感度関数の導出のために、 $h_p/V_{DD} = 0.833$ 、 $h_p = 10$ V、および $\omega = 0.002 \cdot 2\pi$ におけるインパルス信号を用いる。

Injection phase ϕ_i (rad)

図7:設計された注入同期系E級発振器のインパルス感度関数。

図7は設計された注入同期系E級発振器のインパルス感度関数を示す。インパルス感度関数は単位インパルスを用い、注入点の関数とする位相シフト量と定義する。線形反応領域において、位相シフト量は図6に示されるようにパルス面積に比例するため、インパルス感度関数は次式から得られる。

$$Z_0(\phi_i) = \frac{\Delta \phi}{\frac{h_p}{V_{DD}} \cdot w_p}$$

図7より、 $\phi_i = \pi$ のとき、つまり、スイッチのターンオフの瞬間に不連続点が存在することがわかる。これ は図2に示されるように、ターンオフの瞬間にスイッチ電流が不連続のためである。一方、 $\phi_i = 2\pi$ のとき、 つまり、スイッチのターンオンのときに、Z₀が連続となる。これは、このとき、式(2)に示される E 級動作ス イッチングを満たされ、スイッチ電圧と電流が両方とも連続となるためである。

(3) 設計された発振器の同期範囲

本研究では、正弦波、矩形波、および三角形波の三種類の注入信号による E 級発振器の同期範囲を予測 される。この三つの注入信号はそれぞれ以下のように表現される。

1) 正弦波

$$\frac{v_{inj}}{V_{DD}} = \frac{V_s}{V_{DD}}\sin\Theta$$
(27)

2) 矩形波

$$\frac{v_{inj}}{V_{DD}} = \begin{cases} \frac{V_r}{V_{DD}}, & \text{for } 0 \le \Theta < \pi\\ 0, & \text{for } \pi \le \Theta < 2\pi \end{cases}$$
(28)

(26)

3) 三角形波

$$\frac{v_{inj}}{V_{DD}} = \begin{cases} \frac{2V_t}{\pi V_{DD}}\Theta, & \text{for } 0 \le \Theta < \frac{\pi}{2} \\ \frac{V_t}{V_{DD}} - \frac{2V_t}{\pi V_{DD}} \left(\Theta - \frac{\pi}{2}\right), & \text{for } \frac{\pi}{2} \le \Theta < \frac{3\pi}{2} \\ \frac{-V_t}{V_{DD}} + \frac{2V_t}{\pi V_{DD}} \left(\Theta - \frac{3\pi}{2}\right), & \text{for } \frac{3\pi}{2} \le \Theta < 2\pi \end{cases}$$

$$(29)$$

ここで、Vs、Vr、およびVrはそれぞれの波形のピーク値である。

Γ(φ)はインパルス感度関数と注入信号の畳み込み積分から、数値的に得られる。この数値計算において、 インパルス感度関数の第50次までのフーリエ級数を用いられ、注入信号との畳み込み積分を行う。したが って、この計算は精度が高いである。

図8:注入信号に対する設計された E 級発振器の同期範囲。(a) 正弦波。(b) 矩形波。(c) 三角形波。

図9: Vs/Vpp=0.25の正弦波注入信号の同期範囲において実験と計算による出力電力および電力変換効率。

図8はそれぞれの注入信号に対する設計されたE級発振器の同期範囲を示す。式(24)は、Γ(φ)は注入信号 の変化に従い線形的に変化することを示す。したがって、理論上同期範囲は注入信号の電圧ピーク値に比例 し、増加する。図8における数値計算結果は[2]で提案された数値計算アルゴリズムにより得られた。図8よ り、注入信号に関わらず、理論結果は実験結果と数値計算結果とよく一致することがわかる。これにより、 位相縮約アプローチに基づく同規範の推測の有効性と妥当性を示す。式(15)と(16)におけるパラメータは発振 周波数で正規化されるため、図8に示される結果は所望の発振周波数に依存しないことが言える。

図 8(a)は[13]における解析手法で導出された同期範囲も示す。この図より、本研究で提案された手法は[13] における解析手法により高精度であることがわかる。[1]、[22]、[23]における同期範囲の導出手法と比較する

図10: V_S =3Vの時の波形。(a) Ω = 0.99551 ω 。(b) Ω = 1.00449 ω 。

と、本研究で提案された手法は以下の利点を持つ。

a) 回路方程式を定式化されれば、本研究に示された計算手順に従いその同期範囲を導出することが可能で ある。提案手法は任意の発振器に対応できる。さらに、回路モデルに基づき詳細に定式化することにより、 高精度の同期範囲を得ることができる。

b) インパルス感度関数は注入信号波形に依存しないことにより、任意の注入信号波形に対応する同期範囲 を効率的に得られる。

図9は V_{s}/V_{DD} =0.25の正弦波注入信号波形の同期範囲において実験と計算による出力電力および電力変換 効率を示す。全ての同期範囲において、93%の電力変換効率を達成される。これは注入信号がスイッチ電圧 に影響を及ぼさないおよびE級動作スイッチングを達成したためである。図10は Ω =0.99551 ω と Ω =1.00449 ω の注入信号周波数、かつ V_{s} =3Vのときの数値計算波形および実験波形を示す。この図より、全てのスイ ッチ電圧波形はE級動作スイッチングを達成していることがわかる。また、発振周波数は注入信号の周波数 に同期することがわかる。さらに、発振器は定常状態であれば、任意の時間にインパルス電圧摂動を注入す ることができる。

3 期待される波及効果・今後の課題

本研究では、通信用電力発振器に対し、周波数安定化・高効率化を低コストで実現する回路技術を提案し

た。物理分野で発展している位相縮約アプローチを用い注入同期系電力発振器を位相記述することにより、 注入同期の安定化を物理学の視点から記述する。その上で、申請者の持つ高周波化・高効率化のための設計 技術を融合し、周波数安定化と高効率化を同時に達成することで、電力発振器の設計技術が飛躍的に向上す ることが期待される。本研究における提案回路および開発技術は基盤構築からしっかりと押さえるため、非 常に幅広い分野への応用が期待される。低コストで高効率に高周波電流を出力できるため、通信用増幅器、 無線電力伝送の送信段、プラズマ発生器としての RF 電源、共振型コンバータの DC/AC 変換部などへの応用 も期待される。

今後の課題としては、製品化に向けた具体的な回路設計および開発が挙げられる。製品化のために、制御 回路を含む設計が必須となる。本研究では、いかに発振器の周波数安定化および高効率化を達成するかとい う議論が中心で、制御回路と合わせて一つのシステムとしての議論は触れていなかった。また、E 級発振器 では高効率を維持したまま出力を制御することが非常に困難な回路であり、制御法の決定版もまだ提案され ていない。したがって、E 級発振器の制御法の確立とその実装は、今後の重要な研究課題となる。

【参考文献】

- M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov, "Injection-locked class-E oscillator," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 53, no. 6, pp. 1214–1222, Jun. 2006.
- [2] T. Nagashima, X. Wei, H. Tanaka, and H. Sekiya, "Numerical derivations of locking ranges for injection-locked class-E oscillator," in *Proc. IEEE PEDS*, Kitakyushu, Japan, Apr. 2013, pp. 1021–1024.
- [3] H. Hase, H. Sekiya, J. Lu, and T. Yahagi, "Novel design procedure for MOSFET class-E oscillator," *IEICE Trans. Fund.*, vol. E87-A, no. 9, pp. 2241–2247, Sep. 2004.
- [4] H. Hase, H. Sekiya, J. Lu, and T. Yahagi, "Resonant dc/dc converter with class E oscillator," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 53, no. 9, pp. 2025–2035, Sep. 2006.
- [5] M. Matsuo, H. Sekiya, T. Suetsugu, K. Shinoda, and S. Mori, "Design of a high-efficiency class DE tuned power oscillator," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 47, no. 11, pp. 1645–1649, Nov. 2000.
- [6] R. A. Adler, "Study of locking phenomena in oscillators," *Proc. IRE*, vol. 34, no. 6, pp. 351–357, Jun. 1946.
- [7] A.Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, "The quadrature LC oscillator: A complete portrait based on injection locking," *IEEE J. Solid-State Circuits*, vol. 42, no. 9, pp. 1916–1932, Sept. 2007.
- [8] P. Maffezzoni, "Analysis of oscillator injection locking through phasedomain impulse-response," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 55, no. 5, pp. 1297–1305, Jun. 2008.
- [9] C.T.Chen,T. S. Horng, K. C. Peng, and C. J. Li, "High-gain and highefficiency EER/Polar transmitters using injection-locked oscillators," *IEEE Trans. Microw. Theory Tech.*, vol. 60, no. 12, pp. 4117–4128, Dec. 2012.
- [10] D. Dunwell and A. C. Carusone, "Modeling oscillator injection locking using the phase domain response," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 60, no. 11, pp. 2823–2833, Nov. 2013.
- [11] P. Maffezzoni, "Nonlinear phase-domain macromodeling of injectionlocked frequency dividers," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 60, no. 11, pp. 2878–2887, Nov. 2013.
- [12] P. Bhansali and J. Roychowdhury, "Gen-Adler: The generalized Adler's equation for injection locking analysis in oscillators," in *Proc. ASP-DAC*, Yokohama, Japan, Jan. 2009, pp. 522–527.
- [13] A. Hajimiri and T.H. Lee, "A general theory of phase noise in electrical oscillators," *IEEE J. Solid-State Circuits*, vol. 33, no. 2, pp. 179–194, Feb. 1998.
- [14] Y. Kuramoto, Chemical Oscillations, Waves, Turbulence. NewYork: Springer-Verlag, 1984.
- [15] A. T. Winfree, The Geometry of Biological Time. New York: Springer, 1980.
- [16] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge, U.K.: Cambridge Univ. Press, 2001.
- [17] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, "The synchronization of chaotic systems," *Phys. Rep.*, vol. 366, no. 1/2, pp. 1–101, Aug. 2002.

- [18] H. Tanaka, A. Hasegawa, H. Mizuno, and T. Endo, "Synchronizability of distributed clock oscillators," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 49, no. 9, pp. 1271–1278, Sep. 2002.
- [19] M. Bonnin, F. Corinto, and M. Gilli, "A phase model approach synchronization analysis of coupled nonlinear oscillators," in *Proc. ECCTD*, Antalya, Turkey, Aug. 2009, pp. 335–338.
- [20] M. Bonnin, F. Corinto, and M. Gilli, "Phase model reduction and synchronization of nonlinear oscillators by a periodic force," in *Proc. ISCAS*, Paris, France, May 2010, pp. 3385–3388.
- [21] M. Bonnin and F. Corinto, "Phase noise and noise induced frequency shift in stochastic nonlinear oscillators," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 60, no. 8, pp. 2104–2115, Aug. 2013.
- [22] A. Buonomo and A. L. Schiavo, "Analytical approach to the study of injection-locked frequency dividers," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 60, no. 1, pp. 51–62, Jan. 2013.
- [23] A. Buonomo, A. L Schiavo, M. A. Awan, M. S. Asghar, and M. P. Kennedy, "A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 60, no. 12, pp. 3126–3135, Dec. 2013.
- [24] T. Suetsugu and M. K. Kazimierczuk, "Comparison of class-E amplifier with nonlinear and linear shunt capacitance," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 50, no. 8, pp. 1089–1097, Aug. 2003.

題名	掲載誌・学会名等	発表年月
原著論文: Steady-state analysis and design of class-D ZVS inverter at any duty ratio	IEEE Transactions on Power Electronics	2015 年(掲載決定)
原著論文: Analysis and design of loosely inductive coupled wireless power transfer system based on class-E ² DC-DC converter for efficiency enhancement	IEEE Transactions on Circuits and Systems I	2015 年 11 月
原著論文:Steady-state analysis and design of class-DE inverter at any duty ratio	IEEE Transactions on Power Electronics	2015 年 7 月
原著論文: Locking range derivations for injection-locked class-E oscillator applying phase reduction theory	IEEE Transactions on Circuits and Systems I	2014年10月
国際会議論文: Class-E ² inductive power transfer system with pre- and post-regulators	International Conference on Renewable Energy Research and Applications (ICRERA2015)	2015 年 11 月
国際会議論文:Class-D inverter with MOSFET nonlinear parasitic capacitance	International Conference on Renewable Energy Research and Applications (ICRERA2015)	2015 年 11 月
国際会議論文: Design and analysis of class E inverter with MOSFET nonlinear gate-drain and nonlinear drain-to-source capacitances	37th International Telecommunications Energy Conference (INTELEC2015)	2015 年 10 月
国際会議論文 :A method for diving voltage stress of high voltage class E inverter	37th International Telecommunications Energy Conference (INTELEC2015)	2015年10月
国際会議論文: Characteristics of high frequency gate driver by the use of LC self-excitation oscillator	37th International Telecommunications Energy Conference (INTELEC2015)	2015 年 10 月
国際会議論文: Analytical design for resonant inductive coupling wireless power transfer system with class-E inverter and class-DE rectifier	2015 IEEE International Symposium on Circuits and Systems (ISCAS2015)	2015 年 5 月

〈発表資料〉

国際会議論文: Analytical design procedure for resonant inductively coupled wireless power transfer system with class-DE inverter and class-E rectifier	2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS2014)	2014年11月
国際会議論文:Operation of class-E ² dc-dc converter outside nominal conditions	2014 International Symposium on Nonlinear Theory and its Applications (NOLTA2014)	2014年9月
国際会議論文: Loosely coupled inductive wireless power transfer systems with class-E transmitter and multiple receivers	2014 IEEE Energy Conversion Congress and Exposition (ECCE2014)	2014年9月
国内発表:MOSFETの寄生容量を考慮した ZVS-D級インバータの設計	電気学会電子情報システム部門 (C 部門)大会	2015年8月
国内発表:E級整流器におけるパルス密度 変調制御の検討および実装	電子情報通信学会非線形問題研 究会	2015年3月
国内発表:零電圧スイッチングを達成する E ² 級 DC-DC コンバータの定電圧制御の検 討	電子情報通信学会非線形問題研 究会	2015年1月
国内発表:最適状態外における E ² 級 DC-DC コンバータの定常状態解析	第27回回路とシステムワークショップ	2014年8月