
	

1	

ノード中心性の拡張概念を利用した効率的転送を実現するオーバーレイネッ

トワーク設計・制御技術 

代表研究者 高  野  知  佐 広島市立大学 情報科学研究科 准教授 

1 はじめに 

	IoT時代の到来に向け，Web，ストリーミング,	ソーシャルネットワーキングサービス(Facebook,	

Twitter等)等の情報だけでなく，車や家電等の「モノ」から発生する膨大な量の情報がネットワーク上で交

換されると予想されている．IoT環境で必要なサービスレベルをサポートする技術として，SDN	(Software	

Defined	Networking)を適用したネットワーク仮想化技術が注目されており[1]，SDNを実現する方法の１つ

として，既存のネットワーク機器を用いて目的に応じた仮想的ネットワーク	(論理ネットワーク)	を構築す

るオーバーレイ方式が提案されている．本研究では，超スマート社会での円滑なサービス提供に影響を与え

るDDoS攻撃のような脅威に対して，情報ネットワークにおけるオーバーレイ構築技術を使ってDDoS攻撃の影

響を削減するシステムを提案し，その有効性を評価する[2][3][4]．この課題については2章で説明する．	

また，スマートフォンやタブレット端末などモバイルデバイスの普及を背景に「個人間のコミュニケーシ

ョン」に基づく情報交換が活発化している．このような背景のもと，情報ネットワークの安定運用を図るた

めには，情報ネットワークを対象とした設計・制御技術の検討だけでは不十分であり，情報ネットワークと

相互作用しているオンライン社会ネットワーク（ユーザネットワーク）の構造も含めた「情報ネットワーク

とオンライン社会ネットワークのオーバーレイモデル」を意識した検討が不可欠である（図	1）．3章では，

オンライン社会ネットワーク上のアクティビティの伝播を記述するためのモデルをスペクトラルグラフ理論

の観点から検討し，この提案モデルの拡張概念を示す[5][6][7]．	

	

	
図	1		オンライン社会ネットワークを含めたオーバーレイモデル	

	

2 情報ネットワークにおけるオーバーレイ構築技術を利用した DDoS 攻撃緩和システム[2][3][4] 

2.1 あらまし 

コンテキストアウェアなサービスの提供や消費者生活の利便性向上のため，IoT 機器でのデータ収集や消

費者の要求に対してきめ細やかな対応を行うクラウドサービスなど常時通信を行うサービスが創出され，周

りのあらゆるモノが高機能化（スマート化）した超スマート社会[8]が今後到来すると言われている．インタ

ーネットにつながる家電やセンサなどIoT 機器の増加とともに，既に IoT 機器をターゲットにした Mirai[9]

のようなマルウェアの出現が影響してDDoS（Distributed	Denial	of	Service）攻撃が問題となっている．

今後，IoT 機器の爆発的な増加に伴って DDoS攻撃は業務停止にもつながる深刻さを増す一方，消費者が安心

安全にスマートな生活をおくるためには，このような脅威に対して早急な対策を検討しておく必要がある．	

本課題では，サービスのパケット損失を防ぐために，DDoS 攻撃検知後からの正規パケットの損失を防ぐシ

ステムを提案し，その有効性を評価する．		 	

2.2 拡散型フロー制御 

拡散型フロー制御[10][11]とは，物理学における拡散現象を指導原理とし，ネットワークの輻輳回避を目
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的とした自律分散型フロー制御である．エンドホスト間で経由されるネットワーク機器（以下，ノード）が

隣接するノードとの相互作用のみで自律分散的に転送レートの制御を行い，バッファ使用量の平滑化を実現

する．ノードの動作モデルを図	2に示す．	

	

	

図	2		ノードの動作モデル	

	

送信元エンドホスト側を上流，宛先エンドホスト側を下流とすると拡散型フロー制御におけるノードの動

作は以下の 4つである．	

・ 上流ノードへ自ノードのバッファ使用量とパケットの転送レートを含んだフィードバック情報を送信	
・ 下流ノードから送られてきたフィードバック情報を受け取り，その情報と自ノードのバッファ使用量		
を元にパケットの転送レートを計算	

・ 上流ノードから送られてきた宛先宛のパケットを受け取りバッファリング	
・ 下流ノードへ自ノードの転送レートに従って宛先宛パケットを転送	
拡散型フロー制御方式では，ノード	𝑖	のバッファ使用量		𝑛$(𝑡)と下流ノードのバッファ使用量	𝑛$()(𝑡 −

𝑑$)	の差に応じて，フィードバック情報から求める転送レート	𝐽-$(𝑡)	は式（1)となる．		

𝐽-$(𝑡) = 𝑟$(𝑡 − 𝑑$) − 𝐷$(𝑛$()(𝑡 − 𝑑$) − 𝑛$(𝑡))	 (1)	

ただし，下流ノードから送られてきた転送レート	𝑟$(𝑡 − 𝑑$)	をフィードバック情報として用い，𝑑$	はノー
ド		𝑖	とノード		𝑖 + 1		間の伝搬遅延時間，	𝐷$	は拡散係数である．転送レートは非負の値であるということ，ま
た使用できる帯域以下でなければならないことから，実際に利用される転送レート	𝐽$(𝑡)	は式(2)のようにな
る．	

𝐽$(𝑡) = max	(0,min	(𝐽-$(𝑡), 𝐿$(𝑡))) (2)	

ここで，𝐿$(𝑡)	はノード𝑖とノード	𝑖 + 1	間の帯域を制御中のフロー数で割ったものであり，フロー単位で
使用できる帯域を示している．本稿ではこれを使用可能帯域と呼ぶことにする．	

	

2.3  DDoS 攻撃緩和システム 

2.3.1 システムの概要 
	 提案システムは下流での輻輳を回避するために，DDoS	攻撃緩和の対象となるネットワーク（以降，緩和

ネットワーク）が連携して標的サーバ宛のトラヒックの転送レートを制御し，正規パケットの損失を防ぐも

のである．緩和ネットワークにて DDoS 攻撃トラヒックの転送レートを制御するために，提案システムでは大

きなバッファ容量を持つ専用サーバを設置し，専用サーバに DDoS 攻撃トラヒックを経由させる．この時，専

用サーバの転送レートを超えた DDoS 攻撃トラヒックのパケットはバッファリングされるが，任意の専用サ

ーバにバッファが偏った場合バッファ溢れを引き起こす．そのため，専用サーバのバッファの偏りを防ぐた

めに，転送レートを制御してバッファ使用率の平滑化を行い，バッファを効率的に使用する．このトラヒッ

クの転送レート制御を以降ミチゲーションと呼び，提案するシステムでは拡散型フロー制御を応用する．		

2.3.2 システムの構成 
提案システムの全体構成を図	3に示す．提案システムは各緩和ネットワーク（以下，M_NW）にてミチゲー

ションを行うバッファリングノード（以下，bn），常時ネットワークを監視し，DDoS 攻撃を検知するネット

ワーク監視機器，bnと連携してトラヒックを学習し，フィルタリングルールを生成する緩和装置から構成さ

れる．各 M_NW の bn 同士はオーバーレイネットワークを構成しており，隣接する bn 間で連携して下流に転

送するパケットの転送レートを制御する．この「オーバーレイネットワーク」の bnのうち特に，送信元から

のパケットを受信する bn を流入 bn，最下流に位置する標的サーバにパケットを転送する bn を流出 bn と呼

ぶことにする．	

bn は M_NW の境界に配置することを想定しており，攻撃元から標的サーバ間の全てのルータ間に必ずbnを
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設置する必要はない．標的サーバ以外へのトラヒックの影響を最小限にするために，図	 4のように bn を配

置して DDoS 攻撃の検知後に標的サーバ宛のパケットのみを bnに誘導する．	

	

図	3		オーバーレイ構造をもつ提案システムの全体構成	

	

	

2.3.3 転送レート算出式の拡張 
式(1)はノードが直列に繋がった一次元のト

ポロジ（フロー毎の制御）を想定し，かつバッフ

ァ使用量の平滑化を目的とした転送レート算出

式である．しかし，DDoS 攻撃の送信元は複数あ

り，また各 bnのバッファ容量が異なることが想

定されるため，提案システムでは二次元トポロ

ジに対応し，かつバッファ使用率の平滑化を行

うものとする．この 2 つの条件を満たすように

式(1)の転送レート算出式を拡張したものが式

(3)である．また，その要素を式(4)，式(5)，式

(6)示す．ただし，𝑓	をフロー番号，𝑖	をノード番
号，分散係数を	𝐷′=,$，拡散係数を	𝐷=,$，スケール
係数を	𝑆=,$	とすると，𝐽=,$(𝑡)		は，下流ノードから
送られてきた転送レート	𝑟=,$?𝑡 − 𝑑=,$@，バッファ
使用率		𝑢=,$(𝑡)，下流ノードから送られてきたバ
ッファ使用率		𝑢=,$()?𝑡 − 𝑑=,$@，使用可能帯域	
	𝐿$,B	より算出される．	

𝐽-=,$(𝑡) = 𝐷′=,$ ∗ 𝑟=,$?𝑡 − 𝑑=,$@ 	− 𝐷=,$ ∗ 𝑆=,$(𝑢=,$()?𝑡 − 𝑑=,$@ − 𝑢=,$(𝑡)) (3)	

𝐽=,$(𝑡) = max?0,min?𝐽-=,$(𝑡), 𝐿=,$@@	 (4)	

𝐷′=,$ =
1

下流ノード𝑖 + 1が持つ上流ノード数
	 (5)	

𝐷=,$ =
1

下流ノード𝑖 + 1が持つ上流ノード数+ 1
	 (6)	

また，スケール係数		𝑆=,$	はフロー	𝑓,ノード		𝑖		のバッファ容量とする．また，転送レート算出式の拡張に伴
い，フィードバック情報も「転送レート」，「バッファ使用率」，「上流ノード数」とする．	

図	4	DDoS 攻撃検知後の bnへのパケットの誘導	
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2.4 シミュレーションによる評価 

2.4.1 シミュレーションにおけるパラメー

タ 
提案システムを評価するために，標的サ

ーバ宛の DDoS攻撃を開始した後，提案シス

テムのミチゲーションを行うようなシミュ

レータを一台の物理マシン上に作成した．

シミュレーションの流れは以下の通り	

(1)複数の送信元が標的サーバ宛に DDoS 攻

撃を開始	 (2)全送信元からのパケットが標

的サーバに到達したことをトリガーに，流

出bnにミチゲーション通知を送信	(3)ミチ

ゲーション通知を受け取ったbnはミチゲー

ションを開始するとともに，上流 bnにミチ

ゲーション通知を送信	

シミュレータの入力パラメータを表１に

示す．		

	

2.4.2 バッファ使用率の効率化に関する評価 
10 パターンのトポロジでのバッファ使用率の

分散の経時変化を図	5に示す．	

トポロジ 10 パターンの全ての分散がシミュレ

ーション開始後数秒で下降し，その後は横這い，

もしくは緩やかに減少している．このことから，

バッファ容量のばらつきの大きさにかかわらず，

拡張した転送レート算出式を用いることで各 bn

のバッファ使用率の平滑化を数秒で行うことが

できることがわかった．一方で，バッファ使用率

の初期値やトポロジの違いに関わらず，バッファ

使用率の分散がある一定値から下降しないこと

も判明した．[12]では 30 秒以内に対策を開始で

きることが示されているが，提案システムは数秒

でバッファを平滑化できており，ミチゲーション

によりパケット損失の発生を遅らせることが可能

なため，通信セッションの維持や提供サービス継

続に有効である.	

次に上流側と下流側の bn のバッファ使用率に

ついて調査した．平滑化後のバッファ使用率の分

散値が最も大きかったトポロジにおいて特徴的な

2つのフロー（フロー1，フロー2）を選択し，30秒

経過時の各 bn のバッファ使用率を図	 6 に示す．

横軸は流出 bn（最下流 bn）からの深さ（ホップ数）

を表し，フロー1 およびフロー2 の流入 bn（最上

流 bn）はそれぞれ深さ 4および 6に位置する．	

ただし，DDoS攻撃を想定して測定(1)の攻撃ト

ラヒック送信レートを 200 倍にし，全攻撃トラ

ヒック送信レートの合計が流出bn送信レートに比べて高い状況で同様の測定を行った．	

図 6のフロー1より，最上流の bnと最下流の bnのバッファ使用率の差が 10%	程度あり，全攻撃トラヒッ

ク送信レートの合計が大きいほど上流と下流の bn のバッファ使用率に差が出ることが分かった．他の 9 つ

のトポロジで同様の測定を行ったところ，バッファ使用率の差はトポロジごとに異なるが同じ傾向が見られ

表１	シミュレーションパラメータ	

パラメータの種類	
値	

測定(1)	 測定(2)	 測定(3)	

bn 数	 60	 60	 60	

DDoS 攻撃送信元数	 20	 20	 20	

攻撃トラヒック	
送信レート[pps]	

5.0×102	 1.0×105	 1.0×105	

流出 bn	
送信レート[pps]	

1.0×104	 1.0×104	 1.0×104	

bn のバッファ容量	
[packet]	

2.0×106	
〜6.0×106	

1.0×105	
〜16.0×106	 2.0×10

6	

bn 間使用可能帯域

[pps]	
1.0×106	 1.0×106	 1.0×106	

bn 間の伝搬遅延時

間[ms]	
10	 10	 10	

フィードバック	
情報送信間隔[ms]	

10	 10	 10	
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図	5	バッファ使用率の分散の経時変化	
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図	6	フロー毎の bnのバッファ使用率	
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た．フロー2に関してはバッファ使用率の高いフローと合流する bnのバッファ使用率が高くなっていること

が確認できる．これらの結果より，上流と下流の bnのバッファ使用率の差は全攻撃トラヒック送信レートの

合計とトポロジに依存することが分かった．	

	

2.4.3 バッファ容量の総量の違いに関する評価と結果 
パケット損失時の全 bnの平均バッファ使用率をに示す．図 7より 10 パターンのトポロジ全てにおいて，

bnのバッファ容量が大きいほどパケット損失時の全bnの平均バッファ使用率が高いという結果が得られた．

バッファ容量が小さな場合にパケット損失時の全 bn のバッファ使用率が低い理由は，攻撃トラヒックの転

送レートを制御する以前に任意の bn にてバッファ溢れを引き起こしているためである．またバッファ容量

が大きいと転送レートを制御するまでの時間ができるため全 bn のバッファを効率良く使用できる．攻撃ト

ラヒックに対して大きなバッファ容量を用意することで，早期のバッファ溢れを防ぐことができ，正規パケ

ットの損失を小さくすることができる．	

	

	
図	7	パケット損失発生時のノードの平均バッファ使用率	

		

3 オンライン社会ネットワークと情報ネットワークのオーバーレイに関する課題[5][6][7] 

3.1 あらまし 

近年，インターネットやクラウドコンピューティングの発展によりソーシャルメディアを利用した情報交

換が活発に行われている．特にFacebook	や Twitter	のようなソーシャルネットワーキングサービスによる，

個人との繋がりを促進する双方向コミュニケーションに対して，情報の流通やアクティビティの伝播に関す

るダイナミクスは興味深い研究対象となっている．我々はこれまで，ソーシャルネットワーク上のアクティ

ビティの伝播を記述するための振動モデルを検討し，その振動エネルギーをノード中心性指標とする枠組み

を提案した．このノード中心性指標は，従来の次数中心性や媒介中心性を統一的に解釈するだけでなく，多

様なネットワーク状況を反映可能な一般化された指標を与える．特定の事象に対するユーザの関心が時間と

共に薄れるなどの現象は，ネットワーク上の減衰振動で表現可能である．従来は減衰の強さを表す減衰係数

を振動数に依らない定数としていたが，一般の振動現象では減衰係数が振動数に依存することが知られてい

る．本課題では，ネットワーク上の減衰振動モデルを減衰係数が振動数に依存する場合について検討し，オ

ンライン社会ネットワーク上での自然な減衰係数の様相について議論する．		

	

3.2 オンライン社会ネットワークを表現する振動モデル 

オンラインソーシャルネットワークでは，ノード（ユーザ）間に働く影響の強さは一般に非対称であるた

め，有向グラフを用いたモデル化が必要である．ここでは，オンラインソーシャルネットワーク上でユーザ

が相互に影響を及ぼし合う様子を記述する為に用いられているネットワーク上の振動モデルについて，

[5][6][7]に基づいて簡単に紹介する．	
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6	

ネットワーク上の振動モデルでは，ユーザの状態とユーザ間の相互作用の規則について，最も単純で普遍性

のあるモデル（所謂ミニマルモデル）を前提とする．ユーザの状態は一次元の変数で記述されるものとし，

時刻		でのユーザ		の状態を						とする．但し，ユーザ数を		として															である．また，全

ユーザの状態を要素に持つ状態ベクトルを	

	
(7)	

とする．	

ユーザ			の状態						は，隣接ノードから影響を受け，隣接ノードの状態との差が小さくなる方向に復

元力を受ける．ユーザ			がその隣接ノード		から受ける復元力は，状態量の差に比例するとし，									を

比例定数として	

	
(8)	

である．	

ここで，ユーザ間の影響の強さは一般に非対称であることから，一般に												である．このとき，

ユーザの状態ベクトルの運動方程式は以下のように与えられる．	

	
(9)	

	

は有向リンク									のリンクの重みが					で与えられる重み付き有向グラフのラプラシアン行列で

ある．有向グラフの特別な場合として，対称化可能な有向グラフという性質の良いクラスが存在する．それ

は，ある正の数																		が存在して，以下の関係を満たす場合をいう．	

	
(10)	

このとき，ノード間に働く影響力は，ニュートンの第三法則で表現される作用と反作用の大きさが等しくな

るような力学的な相互作用となる[13]．対称化可能な有向グラフのラプラシアン行列を			と表すとすると，							

は																											を用いて以下の手順で実対称行列			に変換することができる．		は対

角化可能で，その固有値は常に実数	(しかも非負)	であることがわかっている．	

	
(11)	

また，対称化可能な有向グラフ上の振動モデルでは，振動エネルギーがよく知られたノード中心性（次数

中心性と媒介中心性を含む一般化されたノード中心性の概念を与えることが知られていて[5][6][7]，その

値は（振動の減衰の効果がない限り）時間が経っても変化しないことがわかっている（評価例図	8）．	

	
	

図	8	振動エネルギーと次数中心性（左）および媒介中心性（右）の比較	

	

対称化可能ではない有向グラフでは，ラプラシアン行列の固有値が全て実数とは限らない．固有値に複素

数を含む場合，振動エネルギーが発散し，ネット炎上を記述するモデルとなる[13]．	

本研究では，ネット炎上のが起こらない条件として，ラプラシアン行列				の全ての固有値が実数である

状況を想定する．このとき，			が必ずしも対称化可能ではないことに注意して欲しい．対角化可能な有向グ
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Abstract—In recent years, we have studied an oscilla-
tion model to describe the propagation of activities on so-
cial networks and proposed the framework that its oscilla-
tion energy corresponds to the various node centrality in-
dex. The proposed node centrality index provides not only
the underlying mechanism of conventional degree central-
ity and betweenness centrality, but also gives a general-
ized index that can reflect various network conditions. The
phenomenon that the user’s interest in a specific event di-
minishes with time can be represented by damped oscil-
lation on the network. In previous studies, we assumed a
damping coefficient, the damping strength of oscillation,
as a constant independent of the frequency, but it is known
that the damping coefficient in the general oscillation phe-
nomena depends on the frequency. In this research, we
investigate the behavior of the damping oscillation model
on the network when the damping coefficient depends on
the frequency, and discuss the reasonable possibility of
the frequency-dependent damping coefficient on social net-
works.

1. Introduction

In recent years, information exchange using social media
has been actively performed according to the development
of the Internet and cloud computing. Dynamics concern-
ing distribution of information and propagation of activi-
ties is an interesting study target for two-way communica-
tion by social networking services such as Facebook and
Twitter. We have considered the oscillation model describ-
ing the propagation of activities on social networks [1, 2].
Moreover, for the oscillation model to describe the network
dynamics, we proposed the oscillation energy and the ki-
netic energy of each node as new indices of node central-
ity [3, 4], that are generalized notion of the conventional
degree and betweenness centralities [5, 6]. The proposed
oscillation model can express a phenomenon on SNS such
as users are less and less interested in specific information
and news over time, as damped oscillation model on the
network. Examples in which the damping coefficient de-
pends on the frequency often appears in the general phys-

ical phenomena, while in the conventional damped oscil-
lation model on networks, the damping coefficient repre-
senting the damping strength has been assumed as a con-
stant independent of the frequency of the oscillation. In
this research, we investigate the behavior of the damping
oscillation model on networks when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks.

2. Preliminary

2.1. Oscillation Model on Directed Networks

Since the strength of the influence between nodes (users)
is generally asymmetric in online social networks, mod-
eling using a directed graph is necessary. In this section,
we briefly introduce the oscillation model on the network
which can describe how users interact with each other on
the online social network based on [1].

In the oscillation model on the network, we assume the
simplest and universal model (so-called minimal model)
about the user’s state and the rule of interaction between
users. In this minimal model, the user’s state is described
as a one-dimensional variable, the number of users is n,
and the state of the user i at time t is expressed by xi(t)
(i = 1, 2, . . . , n). Moreover, a user state vector x(t) having
the state of all users as its elements is

x(t) := t(x1(t), . . . , xn(t)) (1)

The state xi(t) of user i is influenced by the adjacent nodes
and receives restoring force so that the difference from the
state of the adjacent nodes becomes smaller. If the restor-
ing force that user i receives from its adjacent node j is
proportional to the difference in these state quantities, the
restoring force is expressed by

−wi j (xi(t) − x j(t)), (2)

where wi j (> 0) is proportional constant and wi j ! wji be-
cause the interaction between users is generally asymmet-
ric. Based on the idea of the minimal model, the equation

of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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investigate the behavior of the damping oscillation model
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the frequency, and discuss the reasonable possibility of
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stant independent of the frequency of the oscillation. In
this research, we investigate the behavior of the damping
oscillation model on networks when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
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on social networks.
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Since the strength of the influence between nodes (users)
is generally asymmetric in online social networks, mod-
eling using a directed graph is necessary. In this section,
we briefly introduce the oscillation model on the network
which can describe how users interact with each other on
the online social network based on [1].

In the oscillation model on the network, we assume the
simplest and universal model (so-called minimal model)
about the user’s state and the rule of interaction between
users. In this minimal model, the user’s state is described
as a one-dimensional variable, the number of users is n,
and the state of the user i at time t is expressed by xi(t)
(i = 1, 2, . . . , n). Moreover, a user state vector x(t) having
the state of all users as its elements is
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and receives restoring force so that the difference from the
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In the oscillation model on the network, we assume the
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about the user’s state and the rule of interaction between
users. In this minimal model, the user’s state is described
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and the state of the user i at time t is expressed by xi(t)
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about the user’s state and the rule of interaction between
users. In this minimal model, the user’s state is described
as a one-dimensional variable, the number of users is n,
and the state of the user i at time t is expressed by xi(t)
(i = 1, 2, . . . , n). Moreover, a user state vector x(t) having
the state of all users as its elements is

x(t) := t(x1(t), . . . , xn(t)) (1)

The state xi(t) of user i is influenced by the adjacent nodes
and receives restoring force so that the difference from the
state of the adjacent nodes becomes smaller. If the restor-
ing force that user i receives from its adjacent node j is
proportional to the difference in these state quantities, the
restoring force is expressed by

−wi j (xi(t) − x j(t)), (2)

where wi j (> 0) is proportional constant and wi j ! wji be-
cause the interaction between users is generally asymmet-
ric. Based on the idea of the minimal model, the equation

Damped Oscillation Model with Frequency-Dependent Decay Rate
in Social Networks

Chisa Takano† and Masaki Aida‡

†Graduate School of Information Sciences, Hiroshima City University
Hiroshima 731-3194, Japan

Email: takano@hiroshima-cu.ac.jp
‡Graduate School of Systems Design, Tokyo Metropolitan University

Hino, Tokyo 191-0065, Japan
Email: aida@tmu.ac.jp

Abstract—In recent years, we have studied an oscilla-
tion model to describe the propagation of activities on so-
cial networks and proposed the framework that its oscilla-
tion energy corresponds to the various node centrality in-
dex. The proposed node centrality index provides not only
the underlying mechanism of conventional degree central-
ity and betweenness centrality, but also gives a general-
ized index that can reflect various network conditions. The
phenomenon that the user’s interest in a specific event di-
minishes with time can be represented by damped oscil-
lation on the network. In previous studies, we assumed a
damping coefficient, the damping strength of oscillation,
as a constant independent of the frequency, but it is known
that the damping coefficient in the general oscillation phe-
nomena depends on the frequency. In this research, we
investigate the behavior of the damping oscillation model
on the network when the damping coefficient depends on
the frequency, and discuss the reasonable possibility of
the frequency-dependent damping coefficient on social net-
works.

1. Introduction

In recent years, information exchange using social media
has been actively performed according to the development
of the Internet and cloud computing. Dynamics concern-
ing distribution of information and propagation of activi-
ties is an interesting study target for two-way communica-
tion by social networking services such as Facebook and
Twitter. We have considered the oscillation model describ-
ing the propagation of activities on social networks [1, 2].
Moreover, for the oscillation model to describe the network
dynamics, we proposed the oscillation energy and the ki-
netic energy of each node as new indices of node central-
ity [3, 4], that are generalized notion of the conventional
degree and betweenness centralities [5, 6]. The proposed
oscillation model can express a phenomenon on SNS such
as users are less and less interested in specific information
and news over time, as damped oscillation model on the
network. Examples in which the damping coefficient de-
pends on the frequency often appears in the general phys-

ical phenomena, while in the conventional damped oscil-
lation model on networks, the damping coefficient repre-
senting the damping strength has been assumed as a con-
stant independent of the frequency of the oscillation. In
this research, we investigate the behavior of the damping
oscillation model on networks when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks.

2. Preliminary

2.1. Oscillation Model on Directed Networks

Since the strength of the influence between nodes (users)
is generally asymmetric in online social networks, mod-
eling using a directed graph is necessary. In this section,
we briefly introduce the oscillation model on the network
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In recent years, information exchange using social media
has been actively performed according to the development
of the Internet and cloud computing. Dynamics concern-
ing distribution of information and propagation of activi-
ties is an interesting study target for two-way communica-
tion by social networking services such as Facebook and
Twitter. We have considered the oscillation model describ-
ing the propagation of activities on social networks [1, 2].
Moreover, for the oscillation model to describe the network
dynamics, we proposed the oscillation energy and the ki-
netic energy of each node as new indices of node central-
ity [3, 4], that are generalized notion of the conventional
degree and betweenness centralities [5, 6]. The proposed
oscillation model can express a phenomenon on SNS such
as users are less and less interested in specific information
and news over time, as damped oscillation model on the
network. Examples in which the damping coefficient de-
pends on the frequency often appears in the general phys-

ical phenomena, while in the conventional damped oscil-
lation model on networks, the damping coefficient repre-
senting the damping strength has been assumed as a con-
stant independent of the frequency of the oscillation. In
this research, we investigate the behavior of the damping
oscillation model on networks when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks.

2. Preliminary

2.1. Oscillation Model on Directed Networks

Since the strength of the influence between nodes (users)
is generally asymmetric in online social networks, mod-
eling using a directed graph is necessary. In this section,
we briefly introduce the oscillation model on the network
which can describe how users interact with each other on
the online social network based on [1].

In the oscillation model on the network, we assume the
simplest and universal model (so-called minimal model)
about the user’s state and the rule of interaction between
users. In this minimal model, the user’s state is described
as a one-dimensional variable, the number of users is n,
and the state of the user i at time t is expressed by xi(t)
(i = 1, 2, . . . , n). Moreover, a user state vector x(t) having
the state of all users as its elements is

x(t) := t(x1(t), . . . , xn(t)) (1)

The state xi(t) of user i is influenced by the adjacent nodes
and receives restoring force so that the difference from the
state of the adjacent nodes becomes smaller. If the restor-
ing force that user i receives from its adjacent node j is
proportional to the difference in these state quantities, the
restoring force is expressed by

−wi j (xi(t) − x j(t)), (2)

where wi j (> 0) is proportional constant and wi j ! wji be-
cause the interaction between users is generally asymmet-
ric. Based on the idea of the minimal model, the equation
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of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider

the damped oscillation model when the damping coefficient
depends on the frequency.

For the natural angular frequency ω of the oscillation
mode, we assume the damping coefficient is γ(ω) (≥ 0)
given as a function of ω. It is the main subject of this sec-
tion to consider what functional form is possible when γ(ω)
is not a constant.

Starting from the equation of motion (9) decomposed ev-
ery oscillation mode µ, we expand the equation of motion
as follows:

d2

dt2 ψµ(t) + γ(ωµ)
d
dt
ψµ(t) = −λµ ψµ(t). (10)

The natural frequency for each oscillation mode is ωµ =√
λµɽRepresenting the equation of motion (10) for each

oscillation mode by using the matrix form in accordance
with the relationship between (8) and (9), we obtain

d2

dt2 ψ(t) + Γ
d
dt
ψ(t) = −Λψ(t), (11)

where

Γ := diag (γ(ω0), γ(ω1), . . . , γ(ωn−1)) .

(8) is a special case of (11) where Γ = γ I (I is the n × n
identity matrix).

To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):

PΓ P−1 = γ I.
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Figure 1: Example of original social network.

This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).

• PΓ P−1 is a constant multiple of the Laplacian matrix
L (γ is its proportionality factor):

PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)

4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
network graph is the symmetrizable directed graph, and the
Laplacian matrix L is expressed by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −3 −1 0
−2 4 −1 −1
−2 −3 6 −1

0 −3 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

obviously, the (1,4) and (4,1) elements of L are is 0. The
diagonal matrix Λ for L is

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 0 0 0
0 7 0 0
0 0 4 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where the diagonal elements are the eigenvalues of L. The
matrix P composed of the eigenvectors of L is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.206 −0.566 −0.447 −0.500
−0.481 0.425 0.000 −0.500

0.827 0.425 0.000 −0.500
0.206 −0.566 0.894 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)
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of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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Abstract—In recent years, we have studied an oscilla-
tion model to describe the propagation of activities on so-
cial networks and proposed the framework that its oscilla-
tion energy corresponds to the various node centrality in-
dex. The proposed node centrality index provides not only
the underlying mechanism of conventional degree central-
ity and betweenness centrality, but also gives a general-
ized index that can reflect various network conditions. The
phenomenon that the user’s interest in a specific event di-
minishes with time can be represented by damped oscil-
lation on the network. In previous studies, we assumed a
damping coefficient, the damping strength of oscillation,
as a constant independent of the frequency, but it is known
that the damping coefficient in the general oscillation phe-
nomena depends on the frequency. In this research, we
investigate the behavior of the damping oscillation model
on the network when the damping coefficient depends on
the frequency, and discuss the reasonable possibility of
the frequency-dependent damping coefficient on social net-
works.

1. Introduction

In recent years, information exchange using social media
has been actively performed according to the development
of the Internet and cloud computing. Dynamics concern-
ing distribution of information and propagation of activi-
ties is an interesting study target for two-way communica-
tion by social networking services such as Facebook and
Twitter. We have considered the oscillation model describ-
ing the propagation of activities on social networks [1, 2].
Moreover, for the oscillation model to describe the network
dynamics, we proposed the oscillation energy and the ki-
netic energy of each node as new indices of node central-
ity [3, 4], that are generalized notion of the conventional
degree and betweenness centralities [5, 6]. The proposed
oscillation model can express a phenomenon on SNS such
as users are less and less interested in specific information
and news over time, as damped oscillation model on the
network. Examples in which the damping coefficient de-
pends on the frequency often appears in the general phys-

ical phenomena, while in the conventional damped oscil-
lation model on networks, the damping coefficient repre-
senting the damping strength has been assumed as a con-
stant independent of the frequency of the oscillation. In
this research, we investigate the behavior of the damping
oscillation model on networks when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks.

2. Preliminary

2.1. Oscillation Model on Directed Networks

Since the strength of the influence between nodes (users)
is generally asymmetric in online social networks, mod-
eling using a directed graph is necessary. In this section,
we briefly introduce the oscillation model on the network
which can describe how users interact with each other on
the online social network based on [1].

In the oscillation model on the network, we assume the
simplest and universal model (so-called minimal model)
about the user’s state and the rule of interaction between
users. In this minimal model, the user’s state is described
as a one-dimensional variable, the number of users is n,
and the state of the user i at time t is expressed by xi(t)
(i = 1, 2, . . . , n). Moreover, a user state vector x(t) having
the state of all users as its elements is

x(t) := t(x1(t), . . . , xn(t)) (1)

The state xi(t) of user i is influenced by the adjacent nodes
and receives restoring force so that the difference from the
state of the adjacent nodes becomes smaller. If the restor-
ing force that user i receives from its adjacent node j is
proportional to the difference in these state quantities, the
restoring force is expressed by

−wi j (xi(t) − x j(t)), (2)

where wi j (> 0) is proportional constant and wi j ! wji be-
cause the interaction between users is generally asymmet-
ric. Based on the idea of the minimal model, the equation

of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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Abstract—In recent years, we have studied an oscilla-
tion model to describe the propagation of activities on so-
cial networks and proposed the framework that its oscilla-
tion energy corresponds to the various node centrality in-
dex. The proposed node centrality index provides not only
the underlying mechanism of conventional degree central-
ity and betweenness centrality, but also gives a general-
ized index that can reflect various network conditions. The
phenomenon that the user’s interest in a specific event di-
minishes with time can be represented by damped oscil-
lation on the network. In previous studies, we assumed a
damping coefficient, the damping strength of oscillation,
as a constant independent of the frequency, but it is known
that the damping coefficient in the general oscillation phe-
nomena depends on the frequency. In this research, we
investigate the behavior of the damping oscillation model
on the network when the damping coefficient depends on
the frequency, and discuss the reasonable possibility of
the frequency-dependent damping coefficient on social net-
works.

1. Introduction

In recent years, information exchange using social media
has been actively performed according to the development
of the Internet and cloud computing. Dynamics concern-
ing distribution of information and propagation of activi-
ties is an interesting study target for two-way communica-
tion by social networking services such as Facebook and
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ing the propagation of activities on social networks [1, 2].
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ical phenomena, while in the conventional damped oscil-
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this research, we investigate the behavior of the damping
oscillation model on networks when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks.

2. Preliminary
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of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by
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dt
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where γ (≥ 0) is the damping coefficient.
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Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,
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dt2 ψ(t) + γ
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dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
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into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider

the damped oscillation model when the damping coefficient
depends on the frequency.

For the natural angular frequency ω of the oscillation
mode, we assume the damping coefficient is γ(ω) (≥ 0)
given as a function of ω. It is the main subject of this sec-
tion to consider what functional form is possible when γ(ω)
is not a constant.

Starting from the equation of motion (9) decomposed ev-
ery oscillation mode µ, we expand the equation of motion
as follows:

d2

dt2 ψµ(t) + γ(ωµ)
d
dt
ψµ(t) = −λµ ψµ(t). (10)

The natural frequency for each oscillation mode is ωµ =√
λµɽRepresenting the equation of motion (10) for each

oscillation mode by using the matrix form in accordance
with the relationship between (8) and (9), we obtain

d2

dt2 ψ(t) + Γ
d
dt
ψ(t) = −Λψ(t), (11)

where

Γ := diag (γ(ω0), γ(ω1), . . . , γ(ωn−1)) .

(8) is a special case of (11) where Γ = γ I (I is the n × n
identity matrix).

To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):

PΓ P−1 = γ I.
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Figure 1: Example of original social network.

This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).

• PΓ P−1 is a constant multiple of the Laplacian matrix
L (γ is its proportionality factor):

PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)

4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
network graph is the symmetrizable directed graph, and the
Laplacian matrix L is expressed by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −3 −1 0
−2 4 −1 −1
−2 −3 6 −1

0 −3 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

obviously, the (1,4) and (4,1) elements of L are is 0. The
diagonal matrix Λ for L is

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 0 0 0
0 7 0 0
0 0 4 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where the diagonal elements are the eigenvalues of L. The
matrix P composed of the eigenvectors of L is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.206 −0.566 −0.447 −0.500
−0.481 0.425 0.000 −0.500

0.827 0.425 0.000 −0.500
0.206 −0.566 0.894 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)
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of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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である．	

減衰係数						の固有振動数			依存性を調べることは，減衰振動の運動方程式	(18)	において，対角行
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3.5 評価 
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the damped oscillation model when the damping coefficient
depends on the frequency.

For the natural angular frequency ω of the oscillation
mode, we assume the damping coefficient is γ(ω) (≥ 0)
given as a function of ω. It is the main subject of this sec-
tion to consider what functional form is possible when γ(ω)
is not a constant.

Starting from the equation of motion (9) decomposed ev-
ery oscillation mode µ, we expand the equation of motion
as follows:

d2

dt2 ψµ(t) + γ(ωµ)
d
dt
ψµ(t) = −λµ ψµ(t). (10)

The natural frequency for each oscillation mode is ωµ =√
λµɽRepresenting the equation of motion (10) for each

oscillation mode by using the matrix form in accordance
with the relationship between (8) and (9), we obtain

d2

dt2 ψ(t) + Γ
d
dt
ψ(t) = −Λψ(t), (11)

where

Γ := diag (γ(ω0), γ(ω1), . . . , γ(ωn−1)) .

(8) is a special case of (11) where Γ = γ I (I is the n × n
identity matrix).

To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):

PΓ P−1 = γ I.
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Figure 1: Example of original social network.

This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).

• PΓ P−1 is a constant multiple of the Laplacian matrix
L (γ is its proportionality factor):

PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)

4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
network graph is the symmetrizable directed graph, and the
Laplacian matrix L is expressed by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −3 −1 0
−2 4 −1 −1
−2 −3 6 −1

0 −3 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

obviously, the (1,4) and (4,1) elements of L are is 0. The
diagonal matrix Λ for L is

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 0 0 0
0 7 0 0
0 0 4 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where the diagonal elements are the eigenvalues of L. The
matrix P composed of the eigenvectors of L is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.206 −0.566 −0.447 −0.500
−0.481 0.425 0.000 −0.500

0.827 0.425 0.000 −0.500
0.206 −0.566 0.894 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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This corresponds to Γ = γ I, and results in the con-
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PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)
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In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
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as follows:
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where
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(8) is a special case of (11) where Γ = γ I (I is the n × n
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To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain
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dt2 x(t) + (PΓ P−1)
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x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):
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of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation
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address this problem, it is natural to adopt the following
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we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)
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tive. Therefore,
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This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).

• PΓ P−1 is a constant multiple of the Laplacian matrix
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PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)

4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
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4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
network graph is the symmetrizable directed graph, and the
Laplacian matrix L is expressed by

L =
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where the diagonal elements are the eigenvalues of L. The
matrix P composed of the eigenvectors of L is

P =
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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the damped oscillation model when the damping coefficient
depends on the frequency.

For the natural angular frequency ω of the oscillation
mode, we assume the damping coefficient is γ(ω) (≥ 0)
given as a function of ω. It is the main subject of this sec-
tion to consider what functional form is possible when γ(ω)
is not a constant.

Starting from the equation of motion (9) decomposed ev-
ery oscillation mode µ, we expand the equation of motion
as follows:

d2

dt2 ψµ(t) + γ(ωµ)
d
dt
ψµ(t) = −λµ ψµ(t). (10)

The natural frequency for each oscillation mode is ωµ =√
λµɽRepresenting the equation of motion (10) for each

oscillation mode by using the matrix form in accordance
with the relationship between (8) and (9), we obtain

d2

dt2 ψ(t) + Γ
d
dt
ψ(t) = −Λψ(t), (11)

where

Γ := diag (γ(ω0), γ(ω1), . . . , γ(ωn−1)) .

(8) is a special case of (11) where Γ = γ I (I is the n × n
identity matrix).

To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):

PΓ P−1 = γ I.
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This corresponds to Γ = γ I, and results in the con-
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of motion for a user state vector x(t) can be obtained by
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dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
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effect of the oscillation. In a non-symmetrizable directed
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numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
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This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).
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energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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When the diagonal matrix Γ with damping coefficients
depending on the frequency ωµ (=

√
λµ) as elements is

Γ = diag
( √

λ0,
√
λ1, . . . ,

√
λn−1

)
,

PΓ P−1 is

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.675 −1.133 −0.378 −0.163
−0.756 1.512 −0.378 −0.378
−0.756 −1.133 2.268 −0.378
−0.325 −1.133 −0.378 1.837

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the (1,4) and (4,1) elements are not 0, that is, it means
that links that do not exist in the original social network
graph have appeared.

When the diagonal elements of Γ as a different pattern
are

Γ = diag
(

1
λ0 + 1

,
1

λ1 + 1
, . . . ,

1
λn−1 + 1

)
,

then

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.400 0.375 0.125 0.100
0.250 0.500 0.125 0.125
0.250 0.375 0.250 0.125
0.200 0.375 0.125 0.300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, PΓ P−1 is not the Laplacian matrix as a result.
Finally, we evaluate the PΓ P−1 when the diagonal ele-

ments of Γ is

Γ = diag(λ0, λ1, . . . , λn−1).

This pattern corresponds to when the proportionality factor
γ of (14) is equal to 1. In this case,

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.000 −3.000 −1.000 0.000
−2.000 4.000 −1.000 −1.000
−2.000 −3.000 6.000 −1.000

0.000 −3.000 −1.000 4.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is equal to the original Laplacian matrix L (15).
We found that the model of the damping oscillation in

which the damping coefficient depends on the frequency
has a pattern proportional to the eigenvalue, that is, the
square of the natural frequency under natural assumption.

5. Conclusion

In this paper, we examined theoretically the damping os-
cillation model on the network when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks. By using a simple network model, we
demonstrated that the frequency-dependent damping factor
in the model of the damping oscillation should be propor-
tional to the eigenvalue of the Laplacian matrix of social
networks. The fact that the damping coefficient depends on
the frequency can be applied to simplification of the net-
work resonance method [8, 9] that elucidates the structure
of social networks.
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る行列を			とすると，	

	

(25)	

対角行列			が固有振動数													に依存した成分をもつとき，例えば			

のとき，	

	

(26)	

となり，オリジナルの社会ネットワークでは存在しなかったリンクが現れる．	

		一方で，																										のとき，	

	

(27)	

となり，ラプラシアン行列				と等しくなる．	

4 まとめと今後の課題 

情報ネットワーク内でのオーバーレイモデルとして，DDoS 攻撃の影響を緩和するシステムを提案した．提

案 DDoS 攻撃緩和システムは ISP 間で連携し DDoS 攻撃トラヒックを制御することで正規パケットの損失を防

ぐことができる．実験的評価により，提案の緩和システムは拡散型フロー制御を用いたことで，ネットワー

ク全体の状況を一元管理することなく，自律的に DDoS 攻撃の緩和をすることができることを示した．また，

ネットワーク内に設置する緩和用のバッファリングノードはバッファ容量が異なる場合も数十秒以内に平滑

化できることから，ネットワークに設置するバッファリングノードの制約も小さい．ただし，バッファリン

グノードのバッファ容量が小さい場合やトポロジの違いによってバッファ溢れが早期に発生する可能性があ

るため，バッファ容量の設定やトポロジの構築方法は今後の検討課題である．	

さらに情報ネットワークに跨るオーバーレイとしてのオンライン社会ネットワークのダイナミクスを減衰

振動モデルを使って記述し，減衰係数の決定指針について述べた．今後は実ネットワークをモデルとした情

報ネットワークとオンライン社会ネットワークを対象に，レイヤ間の相互作用について検討する予定である．	
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the damped oscillation model when the damping coefficient
depends on the frequency.

For the natural angular frequency ω of the oscillation
mode, we assume the damping coefficient is γ(ω) (≥ 0)
given as a function of ω. It is the main subject of this sec-
tion to consider what functional form is possible when γ(ω)
is not a constant.

Starting from the equation of motion (9) decomposed ev-
ery oscillation mode µ, we expand the equation of motion
as follows:

d2

dt2 ψµ(t) + γ(ωµ)
d
dt
ψµ(t) = −λµ ψµ(t). (10)

The natural frequency for each oscillation mode is ωµ =√
λµɽRepresenting the equation of motion (10) for each

oscillation mode by using the matrix form in accordance
with the relationship between (8) and (9), we obtain

d2

dt2 ψ(t) + Γ
d
dt
ψ(t) = −Λψ(t), (11)

where

Γ := diag (γ(ω0), γ(ω1), . . . , γ(ωn−1)) .

(8) is a special case of (11) where Γ = γ I (I is the n × n
identity matrix).

To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):

PΓ P−1 = γ I.
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Figure 1: Example of original social network.

This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).

• PΓ P−1 is a constant multiple of the Laplacian matrix
L (γ is its proportionality factor):

PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)

4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
network graph is the symmetrizable directed graph, and the
Laplacian matrix L is expressed by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −3 −1 0
−2 4 −1 −1
−2 −3 6 −1

0 −3 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

obviously, the (1,4) and (4,1) elements of L are is 0. The
diagonal matrix Λ for L is

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 0 0 0
0 7 0 0
0 0 4 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where the diagonal elements are the eigenvalues of L. The
matrix P composed of the eigenvectors of L is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.206 −0.566 −0.447 −0.500
−0.481 0.425 0.000 −0.500

0.827 0.425 0.000 −0.500
0.206 −0.566 0.894 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

When the diagonal matrix Γ with damping coefficients
depending on the frequency ωµ (=

√
λµ) as elements is

Γ = diag
( √

λ0,
√
λ1, . . . ,

√
λn−1

)
,

PΓ P−1 is

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.675 −1.133 −0.378 −0.163
−0.756 1.512 −0.378 −0.378
−0.756 −1.133 2.268 −0.378
−0.325 −1.133 −0.378 1.837

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the (1,4) and (4,1) elements are not 0, that is, it means
that links that do not exist in the original social network
graph have appeared.

When the diagonal elements of Γ as a different pattern
are

Γ = diag
(

1
λ0 + 1

,
1

λ1 + 1
, . . . ,

1
λn−1 + 1

)
,

then

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.400 0.375 0.125 0.100
0.250 0.500 0.125 0.125
0.250 0.375 0.250 0.125
0.200 0.375 0.125 0.300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, PΓ P−1 is not the Laplacian matrix as a result.
Finally, we evaluate the PΓ P−1 when the diagonal ele-

ments of Γ is

Γ = diag(λ0, λ1, . . . , λn−1).

This pattern corresponds to when the proportionality factor
γ of (14) is equal to 1. In this case,

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.000 −3.000 −1.000 0.000
−2.000 4.000 −1.000 −1.000
−2.000 −3.000 6.000 −1.000

0.000 −3.000 −1.000 4.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is equal to the original Laplacian matrix L (15).
We found that the model of the damping oscillation in

which the damping coefficient depends on the frequency
has a pattern proportional to the eigenvalue, that is, the
square of the natural frequency under natural assumption.

5. Conclusion

In this paper, we examined theoretically the damping os-
cillation model on the network when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks. By using a simple network model, we
demonstrated that the frequency-dependent damping factor
in the model of the damping oscillation should be propor-
tional to the eigenvalue of the Laplacian matrix of social
networks. The fact that the damping coefficient depends on
the frequency can be applied to simplification of the net-
work resonance method [8, 9] that elucidates the structure
of social networks.
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√
λn−1

)
,

PΓ P−1 is

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.675 −1.133 −0.378 −0.163
−0.756 1.512 −0.378 −0.378
−0.756 −1.133 2.268 −0.378
−0.325 −1.133 −0.378 1.837

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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that links that do not exist in the original social network
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are

Γ = diag
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1
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λ1 + 1
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then
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is equal to the original Laplacian matrix L (15).
We found that the model of the damping oscillation in

which the damping coefficient depends on the frequency
has a pattern proportional to the eigenvalue, that is, the
square of the natural frequency under natural assumption.

5. Conclusion

In this paper, we examined theoretically the damping os-
cillation model on the network when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks. By using a simple network model, we
demonstrated that the frequency-dependent damping factor
in the model of the damping oscillation should be propor-
tional to the eigenvalue of the Laplacian matrix of social
networks. The fact that the damping coefficient depends on
the frequency can be applied to simplification of the net-
work resonance method [8, 9] that elucidates the structure
of social networks.
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the damped oscillation model when the damping coefficient
depends on the frequency.

For the natural angular frequency ω of the oscillation
mode, we assume the damping coefficient is γ(ω) (≥ 0)
given as a function of ω. It is the main subject of this sec-
tion to consider what functional form is possible when γ(ω)
is not a constant.

Starting from the equation of motion (9) decomposed ev-
ery oscillation mode µ, we expand the equation of motion
as follows:

d2

dt2 ψµ(t) + γ(ωµ)
d
dt
ψµ(t) = −λµ ψµ(t). (10)

The natural frequency for each oscillation mode is ωµ =√
λµɽRepresenting the equation of motion (10) for each

oscillation mode by using the matrix form in accordance
with the relationship between (8) and (9), we obtain

d2

dt2 ψ(t) + Γ
d
dt
ψ(t) = −Λψ(t), (11)

where

Γ := diag (γ(ω0), γ(ω1), . . . , γ(ωn−1)) .

(8) is a special case of (11) where Γ = γ I (I is the n × n
identity matrix).

To order to investigate the dependence of the natural fre-
quency ω for the damping coefficient γ(ω), we focus on
the problem how to choose each element of the diagonal
matrix Γ in the equation (10) of damped oscillation. To
address this problem, it is natural to adopt the following
policy.✓ ✏

The damping force between nodes acts only between
nodes where links exist in the original social network
structure.✒ ✑

In order to consider the possibility of the diagonal matrix
Γ based on the above policy, we transform Λ appearing on
the right-hand side of (11) to the original Laplacian matrix
L according to the relationship between (6) and (8). Thus,
we obtain

d2

dt2 x(t) + (PΓ P−1)
d
dt

x(t) = −L x(t). (12)

The link of the original social network must exist be-
tween nodes where the non-diagonal elements of the ma-
trix PΓ P−1 appearing in the damping term are nonnega-
tive. Therefore,

(PΓ P−1)i j ! 0⇒ (L)i j < 0. (13)

There are two patterns that satisfy the condition (13) for
any network topology.

• PΓ P−1 is a constant multiple of the identity matrix I
(γ is its proportionality factor):

PΓ P−1 = γ I.
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Figure 1: Example of original social network.

This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).

• PΓ P−1 is a constant multiple of the Laplacian matrix
L (γ is its proportionality factor):

PΓ P−1 = γL.

This means Γ = γΛ, and the dependency of the damp-
ing coefficient is expressed by

γ(ω) = γω2. (14)

4. Numerical Evaluations

In this section, we evaluate the angular frequency depen-
dence pattern of the damping coefficient satisfying the con-
dition (13) using a simple network model. Figure 1 shows
an original social network graph used by the evaluation.
The number in each circle denotes node ID, and the num-
ber next to each link is the weight of the link. Note that
the directed links (1 → 4) and (4 → 1) do not exist. This
network graph is the symmetrizable directed graph, and the
Laplacian matrix L is expressed by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −3 −1 0
−2 4 −1 −1
−2 −3 6 −1

0 −3 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

obviously, the (1,4) and (4,1) elements of L are is 0. The
diagonal matrix Λ for L is

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 0 0 0
0 7 0 0
0 0 4 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

where the diagonal elements are the eigenvalues of L. The
matrix P composed of the eigenvectors of L is

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.206 −0.566 −0.447 −0.500
−0.481 0.425 0.000 −0.500

0.827 0.425 0.000 −0.500
0.206 −0.566 0.894 −0.500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)
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This corresponds to Γ = γ I, and results in the con-
ventional damped oscillation equation (6).
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L (γ is its proportionality factor):
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When the diagonal matrix Γ with damping coefficients
depending on the frequency ωµ (=

√
λµ) as elements is

Γ = diag
( √

λ0,
√
λ1, . . . ,

√
λn−1

)
,

PΓ P−1 is

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.675 −1.133 −0.378 −0.163
−0.756 1.512 −0.378 −0.378
−0.756 −1.133 2.268 −0.378
−0.325 −1.133 −0.378 1.837

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the (1,4) and (4,1) elements are not 0, that is, it means
that links that do not exist in the original social network
graph have appeared.

When the diagonal elements of Γ as a different pattern
are

Γ = diag
(

1
λ0 + 1

,
1

λ1 + 1
, . . . ,

1
λn−1 + 1

)
,

then

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.400 0.375 0.125 0.100
0.250 0.500 0.125 0.125
0.250 0.375 0.250 0.125
0.200 0.375 0.125 0.300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, PΓ P−1 is not the Laplacian matrix as a result.
Finally, we evaluate the PΓ P−1 when the diagonal ele-

ments of Γ is

Γ = diag(λ0, λ1, . . . , λn−1).

This pattern corresponds to when the proportionality factor
γ of (14) is equal to 1. In this case,

PΓ P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.000 −3.000 −1.000 0.000
−2.000 4.000 −1.000 −1.000
−2.000 −3.000 6.000 −1.000

0.000 −3.000 −1.000 4.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is equal to the original Laplacian matrix L (15).
We found that the model of the damping oscillation in

which the damping coefficient depends on the frequency
has a pattern proportional to the eigenvalue, that is, the
square of the natural frequency under natural assumption.

5. Conclusion

In this paper, we examined theoretically the damping os-
cillation model on the network when the damping coeffi-
cient depends on the frequency, and discuss the reasonable
possibility of the frequency-dependent damping coefficient
on social networks. By using a simple network model, we
demonstrated that the frequency-dependent damping factor
in the model of the damping oscillation should be propor-
tional to the eigenvalue of the Laplacian matrix of social
networks. The fact that the damping coefficient depends on
the frequency can be applied to simplification of the net-
work resonance method [8, 9] that elucidates the structure
of social networks.
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of motion for a user state vector x(t) can be obtained by

d2

dt2 x(t) = −L x(t), (3)

where L is the Laplacian matrix of the weighted directed
graph given the link weight of the directed link (i → j) as
wi j.

As a special case of directed graphs, there is a graph type
with a good property called symmetrizable directed graph.
The graph type satisfies the following relationship for a cer-
tain positive number mi (i = 1, . . . , n):

mi wi j = mj wji. (4)

In this case, the influence acting between the nodes can
be expressed by a dynamic interaction such as the law of
action and its reaction by Newton’s third law [1, 2].

Let L be the asymmetric Laplacian matrix of the sym-
metrizable directed graph. L can be converted to the real
symmetric matrix S by using M := diag(m0, . . . , mn) as
follows:

S := M+1/2LM−1/2. (5)

S is a symmetric matrix and its eigenvalues are real
nonnegative. Moreover, in the oscillation model on the
symmetrizable directed graph, the oscillation energy en-
ables us to address the different centralities (including well-
known degree centrality and betweenness centrality[5, 6])
in the same framework and to derive extended concept
of node centrality reflecting the utilization state of the
network[3, 4]. It is known that the value of the oscillation
energy does not change over time unless there is a damping
effect of the oscillation. In a non-symmetrizable directed
graph , not all eigenvalues of the Laplacian matrix are real
numbers. When complex values are included in eigenval-
ues, the oscillation energy diverges. The divergence of os-
cillation energy has been analyzed and discussed as a flam-
ing phenomena in networks[1, 7].

In this paper, we assume that all the eigenvalues of the
Laplacian matrix L are real numbers as a condition that a
flaming phenomena does not occur. AlsoL is a diagonaliz-
able matrix. Note that L is not necessarily symmetrizable.
For a directed graph that can be diagonalized, the eigen-
values are real numbers, and node centralities can be natu-
rally defined by the oscillation energy. On the other hand,
even in a directed graph that is not symmetrizable, there
are cases where all the eigenvalues of the Laplacian ma-
trix are real numbers. In these cases, the oscillation energy
does not diverge, but the oscillation energy may be repeat-
edly increased and decreased over time even in an isolated
system. The discussion in this paper is applicable to all di-
rected graphs represented by Laplacian matrices of which
eigenvalues are real values different from each other.

2.2. Damped Oscillation Model with Frequency-
Independent Damping Coefficient

The influence of general oscillation phenomenon will
decay with time unless stimulation is applied from the out-
side. The oscillation model on the network can also incor-
porate the damping effect. In order to include the damping
effect, we consider a new oscillation model in which the
resistance force proportional to the rate of change of x(t)
as well as restoring force between nodes are generated.

Assuming that the strength of the resistance force be-
tween nodes is the same for any link on the network, the
equation of motion of the damped oscillation is obtained
by

d2

dt2 x(t) + γ
d
dt

x(t) = −L x(t), (6)

where γ (≥ 0) is the damping coefficient.
From the engineering point of view, since the Lapla-

cian matrix L representing the social network structure
may have n different eigenvalues λµ (µ = 0, 1, . . . , n −
1)[1], L can be diagonalized. Let vµ be the eigenvec-
tor belonging to the eigenvalue λµ of the Laplacian ma-
trix L. L can be diagonalized using the n × n matrix
P := diag(v0, v1, . . . , vn−1) as

Λ := P−1L P, (7)

where the diagonal matrix Λ is

Λ = diag(λ0, λ1, . . . , λn−1).

If the equation of motion of the damped oscillation (6) is
expressed using the diagonal matrix Λ,

d2

dt2 ψ(t) + γ
d
dt
ψ(t) = −Λψ(t) (8)

where
ψ(t) := P−1 x(t).

The transformed equation of motion (8) is decomposed
into n independent differential equations. In other words,
when each element of the vector ψ(t) is expressed by
ψ(t) = t(ψ0(t), ψ1(t), . . . , ψn−1(t)), independent differen-
tial equations can be obtained for each oscillation mode µ
(µ = 0, 1, . . . , n − 1) as the following equation

d2

dt2 ψµ(t) + γ
d
dt
ψµ(t) = −λµ ψµ(t). (9)

3. Damped oscillation model when the damping coeffi-
cient depends on the frequency

In familiar oscillation phenomena, it is generally known
that the damping coefficient of oscillation is not a constant
but depends on the frequency. We have used the oscillation
model on the network in which the damping coefficient γ
is a constant in previous studies. In this paper, we consider
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