超精度解析による医用画像の高精細化技術

研究代表者 長谷川 昌也 富山大学 大学院理工学研究部(工学) 特命助教

1はじめに

MRI は核磁気共鳴現象を利用した断層撮影技術であり、放射線に曝されることなく対象物の内部構造を多 角的に観察できることから、医療分野等では欠かせない技術となっている。特に近年では、MRI による微小 領域観察が世界的に注目されており、MRI 画像の解像度向上に関する研究が活発に行われている[1-7]。7 テ スラの高磁場装置を用いて、0.7 mmの橋動脈や0.3 mmの微小血管の観察を目的とした計測パラメータ最適 化に関する研究が報告されている[8]。また、ヒトだけでなく動物用 MRI を用いて、小動物の内部構造観察を 試みた研究も多く報告されている。ヒトの病理モデルマウスを 80 μm の視野で観察し、病態生理学を用い て病理メカニズムの解明を試みた研究[9]や、9.4 テスラ MRI を用いて低酸素誘発性微小出血に関する調査 [10]、計測原理や画像化手法によって発生するアーチファクト低減のため、緩和強化によるスキャン戦略の 最適化を行い、MRI 画像の高精細化を図った研究が報告されている[11]。これらの研究の多くは、高磁場や 計測方法の最適化といったハードウェア改良により高解像度達成を目指している。

現在の MRI 画像の分解能は磁場強度に依存している。MRI では、計測データを周波数解析することで画像 に再構成している。MRI 画像再構成における周波数解析法として、一般的に高速フーリエ変換(FFT)が利用さ れている。FFT の分解能は解析窓長に依存するため、高精細な MRI 画像を達成するには、広い解析窓長を確 保する必要がある。MRI は高磁場であるほど多くの信号周期を含む測定データを取得できる。そのため、高 磁場にすることで広い解析窓長を確保し、FFT による MRI 画像の分解能を高めている。つまり、MRI 画像の分 解能と磁場強度の依存関係は、解析法が大きく関係していると考えた。

本研究では、ソフトウェアの改良による MRI 画像の高精細化を目的として、高精度周波数解析法である Non-harmonic Analysis (NHA) によって再構成された MRI 画像による微小領域観察に関して検証を行った。 NHA は分解能が解析窓長に依存しにくい手法であり、既に多くの分野に応用され有効性が報告されている [12-15]。NHA を用いて MRI 計測データを正確に解析し画像化することで、既存の MRI 装置で現在よりも高解 像度の MRI 画像を得られる可能性がある。NHA による微小領域観察を検証するため、既存の MRI 装置の撮像 パラメータを基に、コンピュータシミュレーションによる実験を行った。

2 研究方法

2-1 高精度周波数解析法

2次元 NHA では数値計算によってフーリエ係数を推定している。具体的にはモデル信号と解析対象信号の二 乗誤差を最小にすることで周波数パラメータを求めている。2次元 NHA で用いる、2次元複素信号モデル **1**は 以下の式で表される

$$\hat{I}(\mathbf{n}_1, \mathbf{n}_2) = \hat{A}e^{\left(2\pi i \left(\hat{f}_x n_1 + \hat{f}_y n_2 + \hat{\varphi}\right)\right)} \tag{1}$$

ここで、 \hat{A} は振幅、 \hat{f}_x と \hat{f}_y は空間周波数、 $\hat{\varphi}$ は位相、 n_1 と n_2 はピクセル数である。解析対象信号Iとモデル 信号 \hat{I} の誤差を計算する 2 次元 NHA の評価関数は以下の通りである

$$F(\hat{A}, \hat{f}_{x}, \hat{f}_{y}, \hat{\varphi}) = \frac{1}{N_{1}N_{2}} \sum_{n_{1}}^{N_{1}-1} \sum_{n_{2}}^{N_{2}-1} \left\| I(n_{1}, n_{2}) - \hat{I}(n_{1}, n_{2}) \right\|$$
(2)

I は解析対象信号である 2 次元複素数信号(本研究においては MRI 計測データを表す)、 $N_1 \ge N_2$ は 2 次元 データの各次元のデータ総数である。式(2)において、初期値を 2 次元離散フーリエ変換で与え、最急降下法 とニュートン法で最適な \hat{A} 、 \hat{f}_x 、 \hat{f}_y 、 $\hat{\phi}$ を推定する。NHA の解析結果に対し、任意のピクセル数による量子化 を行うことで、従来よりも高分解能な MRI 画像が得られる。

2-2 解析法が微小構造へ与える影響

これまで、FFT が一般的な MRI 画像再構成に使用されてきた。FFT の周波数分解能は解析窓長に依存する。 MRI において、解析窓長は磁場強度によって決定され、高磁場であるほど広い解析窓長を確保できる。その ため、高磁場 MRI 装置は高い空間分解能を実現できる。しかし、高磁場化には、装置の大型化や高磁場への 生体投入に関する倫理的問題によって制限される。この解析窓長と磁場強度の依存関係は解析法である FFT によって生じている。FFT は解析対象信号を整数周期信号に分解する手法であるため、非整数周期信号を解 析した場合サイドローブが発生する。高強度信号のサイドローブは周囲に伝搬し、微小なスペクトルが埋没 する可能性がある。

3 実験・考察

本研究ではNHAによるMRI 計測データ解析の精度検証のため、従来のMRI 画像における1ピクセル以下の 微小空間の可視化についてシミュレーション実験を行った。シミュレーション実験では、従来のMRI 画像に おいて1ピクセル以下の微小領域に微小構造を簡単化した2パターンのファントムを利用し、1.5T MRI で理 想環境下における計測を想定したMRI 計測データをコンピュータ上で作成し、FFT と補間手法、NHA でMRI 画 像化を行った。理想環境を想定した計測データは以下の式で表される

$$k(x, y) = Ae^{(2\pi i(p_k k_x + p_y k_y + \varphi))}$$
(3)

A はファントムの強度値、 $p_x \ge p_y$ はファントムの位置、 $k_x \ge k_y$ は計測空間の次元である。計測空間のパラ メータは実際の MR システム (MRmini SA (1.5 T), DS Pharma Biomedical, Osaka, Japan)を基に決定した。 空間分解能は 125 μ m (= 0.125 mm)を想定した。式. (3)を用いて、1 ピクセル以下の空間にファントムを設 置した。図 1 と 2 は FFT と NHA による微小領域の画像再構成結果である。図 1、図 2 において、白線は従来 の MRI 画像における 1 ピクセルを表している。また、各ファントムの位置座標は表 1 に示す。

Phatom	Phantom	Peak	Peak x-axis	Peak y-axis
type	number	intensity	position[μ m]	position[μ m]
Gauss	1	2	194.1	211.2
	2	1	229.2	181.1
	3	1	144.3	141.5
Line	1	1	166.1	206.1
	2	1	206.1	166.1

表 1. 各ファントムのパラメータ

FFT の結果から(図1(e)及び図2(e))、FFT では分解能が不足するため、ファントムが1ピクセルに平滑 化され表現されている。その結果、ファントムが設置されたピクセル以外の周囲のピクセルにサイドローブ が伝搬し、本来存在しない強度値が発生していることがわかる。これは非整数周期信号を解析したことに起 因するサイドローブである。本実験では、理想環境下を想定した計測データを作成しておりノイズが存在し ないため、解析手法であるFFT の影響で本来存在しない強度値が発生したと言える。つまり、FFT によって 微小構造を可視化した場合、正確に可視化できないだけでなく、解析アーチファクトによって本来存在しな い構造を可視化する可能性がある。

図1(d)と図2(d)に示すゼロパディングによる結果では、ファントムが円形のオブジェクトとして表現さかった。これは、FFTによるMRI画像を基に補間を適用するためであり、FFTと同様にサイドローブの影響が周囲に伝搬したと考える。また、サイドローブ同士が干渉し、設置したファントム同士の中心部の強度値が高くなっていることがわかる。

一方、図1(c)と図2(c)に示すNHAの結果では、1ピクセル内の微小構造を従来法に比べ可視化できている ことがわかる。特に、サイドローブが大きく抑制され、複数のファントムを正確に分離して表現できている。 図1(d)において、最も近い点同士の距離が46.2387 µmであることから、NHAは約0.05 mmの分解能を実現 できる可能性があると言える。しかし、図2(d)において、NHAによるMRI画像では2つのオブジェクトが分 離されているが、正確に2本の斜線を表現することは困難であった。これは、NHA解析で1軸を固定し画像 再構成を行ったため、固定軸方向に対するサイドローブの影響だと考えている。上記の結果より、NHAを既 存の1.5 テスラ小動物用MRIに応用した場合、従来の空間分解能の25 倍である、約0.05 mmの空間分解能 を実現できる可能性があることがわかった。

図 1.2 次元ガウス関数ファントムを設置し、各手法で再構成した MRI 画像。(a)配置したファントムの強度関係。強度値は各点の中心から2次元ガウス関数となっている。最も近い点同士の距離は約46.2387 µm である。(b)オリジナルファントムの画像。(c) NHA による MRI 画像。(d) ゼロパディングによって補間された MRI 画像。ゼロパディングによって解像度は FFT の100 倍となっている。(e) FFT による MRI 画像。

図 2.2 本の斜線ファントムを設置し、各手法によって再構成した MRI 画像。(a)配置したファントムの強度関係。 斜線上で 1 次元ガウス関数の強度値となっている。線同士の距離は約 56.5685 µm である。(b)オリジナルファ ントムの画像。(c) NHA による MRI 画像。(d) ゼロパディングによって補間された MRI 画像。 ゼロパディングに よって解像度は FFT の 100 倍となっている。(e) FFT による MRI 画像。

4 まとめ

本研究では、低磁場小動物用 MRI に対し NHA を応用し、従来の MRI 画像よりも高分解能に微小領域を可視 化できる可能性に関して、コンピュータシミュレーションを用いて検討した。検証実験では、従来の MRI 画 像における1ピクセル以下の微小領域に、微小構造を簡単化した2パターンのファントムを配置した。実計 測の撮像パラメータを基に、理想環境下における計測を想定した1.5T MRI の計測データをコンピュータ上 で作成し、FFT、補間手法、NHA で MRI 画像化を行い比較した。その結果、NHA は従来法に比べ、正確に微小 領域を可視化することができ、最短距離で46.2387 µm にあるファントムを分離して表現できることがわか った。以上の結果より、NHA を既存の1.5 テスラ小動物用 MRI に応用した場合、従来の空間分解能の25 倍 である、約0.05 mm の空間分解能を実現できる可能性があることがわかった。

【参考文献】

- X. Ye, Y. Chen, W. Lin, and F. Huang, "Fast mr image reconstruction for partially parallel imaging with arbitraryspace trajectories," Medical Imaging, IEEE Transactions on, vol. 30, no. 3, pp. 575– 585, 2011.
- [2] Z. Yang and M. Jacob, "Mean square optimal nufft approximation for efficient non-cartesian mri reconstruction," Journal of Magnetic Resonance, vol. 242, pp. 126–135, 2014.
- [3] A. M. Sailer, B. A. Wagemans, P. J. Nelemans, R. de Graaf, and W. H. van Zwam, "Diagnosing intracranial aneurysms with mr angiography systematic review and meta-analysis," Stroke, vol. 45, no. 1, pp. 119–126, 2014.
- [4] Y.-C. Heo, H.-K. Lee, H.-J. Yang, and J.-H. Cho, "Analysis of enlarged images using time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography," Journal of medical systems, vol. 38, no. 12, pp. 1–9, 2014.
- [5] Lindsey, Brooks D., et al. "High resolution ultrasound superharmonic perfusion imaging: In vivo feasibility and quantification of dynamic contrast-enhanced acoustic angiography." Annals of biomedical engineering 45.4 (2017): 939-948.
- [6] M. Goto, A. Kunimatsu, M. Shojima, H. Mori, O. Abe, S. Aoki, N. Hayashi, W. Gonoi, T. Miyati, K. Ino et al., "Depiction of branch vessels arising from intracranial aneurysm sacs: Time-of-flight mr angiography versus ct angiography," Clinical neurology and neurosurgery, vol. 126, pp. 177–184, 2014.
- [7] Kemper, Valentin G., et al. "High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4 T." Neuroimage 164 (2018): 48-58.
- [8] C.-K. Kang, C.-A. Park, K.-N. Kim, S.-M. Hong, C.-W. Park, Y.-B. Kim, and Z.-H. Cho, "Noninvasive visualization of basilar artery perforators with 7t mr angiography," Journal of Magnetic Resonance Imaging, vol. 32, no. 3, pp. 544–550, 2010.
- [9] Berger-Roscher, Nikolaus, et al. "Intervertebral disc lesions: visualisation with ultra-high field MRI at 11.7 T." European Spine Journal 24.11 (2015): 2488-2495.
- [10] Hoffmann, Angelika, et al. "High-field MRI reveals a drastic increase of hypoxia-induced microhemorrhages upon tissue reoxygenation in the mouse brain with strong predominance in the olfactory bulb." PloS one 11.2 (2016): e0148441.
- [11] Spencer Noakes, T. Leigh, R. Mark Henkelman, and Brian J. Nieman. "Partitioning k-space for cylindrical three-dimensional rapid acquisition with relaxation enhancement imaging in the mouse brain." NMR in Biomedicine 30.11 (2017): e3802.
- [12] Cao, Xu, et al. "Non-harmonic analysis applied to optical coherence tomography imaging." Japanese Journal of Applied Physics 51.2R (2012): 022503.
- [13] Hasegawa, Masaya, and Shigeki Hirobayashi. "Visualization of microvascular that assumes an ultra-high field MRI with high precision frequency analysis." 2016 8th International Conference on Information Technology in Medicine and Education (ITME). IEEE, 2016.

- [14] Uchida, Tetsuya, et al. "Numerical simulation validation of nonuniform, nonharmonic analysis of spectral-domain optical coherence tomography." Optical Engineering 54.3 (2015): 033108.
- [15] Hasegawa, Masaya, et al. "High-resolution MR image by high precision signal analysis method for accurately analyze complex signals." Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII. Vol. 10881. International Society for Optics and Photonics, 2019.

題名	掲載誌・学会名等	発表年月
High-resolution MR image by high precision signal analysis method for accurately analyze complex signals.	International Society for Optics and Photonics, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII.	2019

〈発表資料〉